Prostaglandin D2 is a potent chemoattractant for human eosinophils that acts via a novel DP receptor

Blood ◽  
2001 ◽  
Vol 98 (6) ◽  
pp. 1942-1948 ◽  
Author(s):  
Guillaume Monneret ◽  
Sylvie Gravel ◽  
Michael Diamond ◽  
Joshua Rokach ◽  
William S. Powell

Abstract Prostaglandin D2 (PGD2) is released following exposure of asthmatics to allergen and acts via the adenylyl cyclase–coupled receptor for PGD2 (DP receptor). In this study, it is reported that human eosinophils possess this receptor, which would be expected to inhibit their activation. In contrast, it was found that prostaglandin D2 is a potent stimulator of eosinophil chemotaxis, actin polymerization, CD11b expression, and L-selectin shedding. These responses are specific for eosinophils, as neutrophils display little or no response to prostaglandin D2. They were not due to interaction with receptors for other prostanoids, as prostaglandins E2 and F2α, U46619 (a thromboxane A2 analogue), and carbaprostacyclin (a prostacyclin analogue) displayed little or no activity. Furthermore, they were not shared by the selective DP receptor agonist BW245C and were not prevented by the selective DP receptor antagonist BWA868C, indicating that they were not mediated by DP receptors. In contrast, the prostaglandin D2 metabolite 13,14-dihydro-15-oxoprostaglandin D2 induced eosinophil activation but did not stimulate DP receptor–mediated adenosine 3′,5′–cyclic monophosphate (cAMP) formation. These results indicate that in addition to the classic inhibitory DP1 receptor, eosinophils possess a second, novel DP2 receptor that is associated with PGD2-induced cell activation. These 2 receptors appear to interact to regulate eosinophil responses to PGD2, as blockade of DP1 receptor–mediated cAMP production by BWA868C resulted in enhanced DP2receptor–mediated stimulation of CD11b expression. The balance between DP1 and DP2 receptors could determine the degree to which prostaglandin D2 can activate eosinophils and may play a role in eosinophil recruitment in asthma.

1988 ◽  
Vol 249 (3) ◽  
pp. 677-685 ◽  
Author(s):  
J G Altin ◽  
F L Bygrave

The administration of prostaglandin F2 alpha (PGF2 alpha) and the thromboxane A2 analogue, ONO-11113, to rat livers perfused with media containing either 1.3 mM- or 10 microM-Ca2+ was followed by a stimulation of Ca2+ efflux, changes in O2 uptake and glucose output, and increase in portal pressure. The responses elicited by 5 microM-PGF2 alpha were similar to those induced by the alpha-adrenergic agonist phenylephrine. At both 1.3 mM and 10 microM extracellular Ca2+, PGF2 alpha induced Ca2+ efflux (70-90 nmol/g of liver), probably from the same source as that released by phenylephrine. Prostaglandin D2 (5 microM) and prostaglandin E2 (5 microM) also induced responses, but these were generally much smaller (less than 30%) than those induced by PGF2 alpha. Similarly to vasopressin and other Ca2+-mobilizing hormones, PGF2 alpha also interacted synergistically with glucagon (and cyclic AMP) in stimulating Ca2+ influx both in the perfused liver and in isolated hepatocytes. By comparison with phenylephrine and PGF2 alpha, ONO-11113 was much more potent in inducing vasoconstriction, and, at concentrations of 10-200 nM, induced a different pattern of changes in Ca2+ flux, respiration and glycogenolysis. There was first a rapid efflux of Ca2+ (45-60 nmol/g of liver), followed by a smaller Ca2+ influx, and a further release of Ca2+ (approx. 90 nmol/g of liver) when ONO-11113 was removed. Respiration was first stimulated but then markedly inhibited. At concentrations less than 5 nM, ONO-11113 induced a sustained stimulation of O2 uptake and a more prolonged efflux of Ca2+, with less Ca2+ efflux occurring upon the removal of the agent. Glycogenolysis followed a pattern which was similar to the Ca2+ response. Co-administration of glucagon did not potentiate Ca2+ influx by ONO-11113, but the action of ONO-11113 was inhibited (50%) by a few minutes' prior administration of 10 nM-vasopressin. The vasoconstrictive action of ONO-11113 was synergistically potentiated by the co-administration of phenylephrine. Since the actions of arachidonic acid, platelet-activating factor and lysophosphatidylcholine in liver were recently found to be cyclo-oxygenase-sensitive, the results provide strong evidence that at least PGF2 alpha and thromboxane A2 may be involved in mediating the action of these agents.


2020 ◽  
Author(s):  
S Carstensen ◽  
M Müller ◽  
V Erpenbeck ◽  
S Kazani ◽  
DA Sandham

1974 ◽  
Vol 77 (1_Suppl) ◽  
pp. S17
Author(s):  
H.-D. Taubert ◽  
J. S. E. Dericks-Tan ◽  
H. Kühl

Reproduction ◽  
2000 ◽  
pp. 57-68 ◽  
Author(s):  
J Garde ◽  
ER Roldan

Spermatozoa undergo exocytosis in response to agonists that induce Ca2+ influx and, in turn, activation of phosphoinositidase C, phospholipase C, phospholipase A2, and cAMP formation. Since the role of cAMP downstream of Ca2+ influx is unknown, this study investigated whether cAMP modulates phospholipase C or phospholipase A2 using a ram sperm model stimulated with A23187 and Ca2+. Exposure to dibutyryl-cAMP, phosphodiesterase inhibitors or forskolin resulted in enhancement of exocytosis. However, the effect was not due to stimulation of phospholipase C or phospholipase A2: in spermatozoa prelabelled with [3H]palmitic acid or [14C]arachidonic acid, these reagents did not enhance [3H]diacylglycerol formation or [14C]arachidonic acid release. Spermatozoa were treated with the phospholipase A2 inhibitor aristolochic acid, and dibutyryl-cAMP to test whether cAMP acts downstream of phospholipase A2. Under these conditions, exocytosis did not occur in response to A23187 and Ca2+. However, inclusion of dibutyryl-cAMP and the phospholipase A2 metabolite lysophosphatidylcholine did result in exocytosis (at an extent similar to that seen when cells were treated with A23187/Ca2+ and without the inhibitor). Inclusion of lysophosphatidylcholine alone, without dibutyryl-cAMP, enhanced exocytosis to a lesser extent, demonstrating that cAMP requires a phospholipase A2 metabolite to stimulate the final stages of exocytosis. These results indicate that cAMP may act downstream of phospholipase A2, exerting a regulatory role in the exocytosis triggered by physiological agonists.


2021 ◽  
Vol 9 (6) ◽  
pp. 1305
Author(s):  
Carlos Alonso Domínguez-Alemán ◽  
Luis Alberto Sánchez-Vargas ◽  
Karina Guadalupe Hernández-Flores ◽  
Andrea Isabel Torres-Zugaide ◽  
Arturo Reyes-Sandoval ◽  
...  

A common hallmark of dengue infections is the dysfunction of the vascular endothelium induced by different biological mechanisms. In this paper, we studied the role of recombinant NS1 proteins representing the four dengue serotypes, and their role in promoting the expression and release of endocan, which is a highly specific biomarker of endothelial cell activation. We evaluated mRNA expression and the levels of endocan protein in vitro following the stimulation of HUVEC and HMEC-1 cell lines with recombinant NS1 proteins. NS1 proteins increase endocan mRNA expression 48 h post-activation in both endothelial cell lines. Endocan mRNA expression levels were higher in HUVEC and HMEC-1 cells stimulated with NS1 proteins than in non-stimulated cells (p < 0.05). A two-fold to three-fold increase in endocan protein release was observed after the stimulation of HUVECs or HMEC-1 cells with NS1 proteins compared with that in non-stimulated cells (p < 0.05). The blockade of Toll-like receptor 4 (TLR-4) signaling on HMEC-1 cells with an antagonistic antibody prevented NS1-dependent endocan production. Dengue-infected patients showed elevated serum endocan levels (≥30 ng/mL) during early dengue infection. High endocan serum levels were associated with laboratory abnormalities, such as lymphopenia and thrombocytopenia, and are associated with the presence of NS1 in the serum.


2004 ◽  
Vol 199 (1) ◽  
pp. 99-112 ◽  
Author(s):  
Karen Badour ◽  
Jinyi Zhang ◽  
Fabio Shi ◽  
Yan Leng ◽  
Michael Collins ◽  
...  

Involvement of the Wiskott-Aldrich syndrome protein (WASp) in promoting cell activation requires its release from autoinhibitory structural constraints and has been attributed to WASp association with activated cdc42. Here, however, we show that T cell development and T cell receptor (TCR)-induced proliferation and actin polymerization proceed normally in WASp−/− mice expressing a WASp transgene lacking the cdc42 binding domain. By contrast, mutation of tyrosine residue Y291, identified here as the major site of TCR-induced WASp tyrosine phosphorylation, abrogated induction of WASp tyrosine phosphorylation and its effector activities, including nuclear factor of activated T cell transcriptional activity, actin polymerization, and immunological synapse formation. TCR-induced WASp tyrosine phosphorylation was also disrupted in T cells lacking Fyn, a kinase shown here to bind, colocalize with, and phosphorylate WASp. By contrast, WASp was tyrosine dephosphorylated by protein tyrosine phosphatase (PTP)-PEST, a tyrosine phosphatase shown here to interact with WASp via proline, serine, threonine phosphatase interacting protein (PSTPIP)1 binding. Although Fyn enhanced WASp-mediated Arp2/3 activation and was required for synapse formation, PTP-PEST combined with PSTPIP1 inhibited WASp-driven actin polymerization and synapse formation. These observations identify key roles for Fyn and PTP-PEST in regulating WASp and imply that inducible WASp tyrosine phosphorylation can occur independently of cdc42 binding, but unlike the cdc42 interaction, is absolutely required for WASp contributions to T cell activation.


2013 ◽  
Vol 304 (10) ◽  
pp. G908-G916 ◽  
Author(s):  
Shizhong Zhang ◽  
Gintautas Grabauskas ◽  
Xiaoyin Wu ◽  
Moon Kyung Joo ◽  
Andrea Heldsinger ◽  
...  

Sensitization of esophageal afferents plays an important role in esophageal nociception, but the mechanism is less clear. Our previous studies demonstrated that mast cell (MC) activation releases the preformed mediators histamine and tryptase, which play important roles in sensitization of esophageal vagal nociceptive C fibers. PGD2 is a lipid mediator released by activated MCs. Whether PGD2 plays a role in this sensitization process has yet to be determined. Expression of the PGD2 DP1 and DP2 receptors in nodose ganglion neurons was determined by immunofluorescence staining, Western blotting, and RT-PCR. Extracellular recordings were performed in ex vivo esophageal-vagal preparations. Action potentials evoked by esophageal distension were compared before and after perfusion of PGD2, DP1 and DP2 receptor agonists, and MC activation, with or without pretreatment with antagonists. The effect of PGD2 on 1,1′-dioctadecyl-3,3,3′,3′-tetramethylindocarbocyanine perchlorate (DiI)-labeled esophageal nodose neurons was determined by patch-clamp recording. Our results demonstrate that DP1 and DP2 receptor mRNA and protein were expressed mainly in small- and medium-diameter neurons in nodose ganglia. PGD2 significantly increased esophageal distension-evoked action potential discharges in esophageal nodose C fibers. The DP1 receptor agonist BW 245C mimicked this effect. PGD2 directly sensitized DiI-labeled esophageal nodose neurons by decreasing the action potential threshold. Pretreatment with the DP1 receptor antagonist BW A868C significantly inhibited PGD2 perfusion- or MC activation-induced increases in esophageal distension-evoked action potential discharges in esophageal nodose C fibers. In conclusion, PGD2 plays an important role in MC activation-induced sensitization of esophageal nodose C fibers. This adds a novel mechanism of visceral afferent sensitization.


2009 ◽  
Vol 297 (5) ◽  
pp. R1469-R1476 ◽  
Author(s):  
M. Cecilia Ortiz-Capisano ◽  
Tang-Dong Liao ◽  
Pablo A. Ortiz ◽  
William H. Beierwaltes

Renin release from the juxtaglomerular (JG) cell is stimulated by the second messenger cAMP and inhibited by calcium. We previously showed JG cells contain a calcium sensing receptor (CaSR), which, when stimulated, decreases cAMP formation and inhibits renin release. We hypothesize CaSR activation decreases cAMP and renin release, in part, by stimulating a calcium calmodulin-activated phosphodiesterase 1 (PDE1). We incubated our primary culture of JG cells with two selective PDE1 inhibitors [8-methoxymethil-IBMX (8-MM-IBMX; 20 μM) and vinpocetine (40 μM)] and the calmodulin inhibitor W-7 (10 μM) and measured cAMP and renin release. Stimulation of the JG cell CaSR with the calcimimetic cinacalcet (1 μM) resulted in decreased cAMP from a basal of 1.13 ± 0.14 to 0.69 ± 0.08 pM/mg protein ( P < 0.001) and in renin release from 0.89 ± 0.16 to 0.38 ± 0.08 μg ANG I/ml·h−1·mg protein−1 ( P < 0.001). However, the addition of 8-MM-IBMX with cinacalcet returned both cAMP (1.10 ± 0.19 pM/mg protein) and renin (0.57 ± 0.16 μg ANG I/ml·h−1·mg protein−1) to basal levels. Similar results were obtained with vinpocetine, and also with W-7. Combining 8-MM-IBMX and W-7 had no additive effect. To determine which PDE1 isoform is involved, we performed Western blot analysis for PDE1A, B, and C. Only Western blot analysis for PDE1C showed a characteristic band apparent at 80 kDa. Immunofluorescence showed cytoplasmic distribution of PDE1C and renin in the JG cells. In conclusion, PDE1C is expressed in isolated JG cells, and contributes to calcium's inhibitory modulation of renin release from JG cells.


1990 ◽  
Vol 96 (1) ◽  
pp. 99-106
Author(s):  
H.U. Keller ◽  
V. Niggli ◽  
A. Zimmermann ◽  
R. Portmann

The present study demonstrates new properties of H-7. The protein kinase inhibitor H-7 is a potent activator of several neutrophil functions. Stimulation of initially spherical nonmotile neutrophils elicits vigorous shape changes within a few seconds, increases in cytoskeletal actin, altered F-actin distribution, increased adhesiveness and a relatively small increase in pinocytic activity. H-7 has also chemokinetic activities. Depending on the experimental condition, H-7 may elicit or inhibit neutrophil locomotion. It failed to induce chemotaxis. Thus, the response pattern elicited by H-7 is different from that of other leukocyte activators such as chemotactic peptides, PMA or diacylglycerols. The finding that H-7 can elicit shape changes, actin polymerization and pinocytosis suggests that these events can occur without activation of protein kinase C (PKC). PMA-induced shape changes and stimulation of pinocytosis were not inhibited by H-7.


Sign in / Sign up

Export Citation Format

Share Document