LIAA: A Listen Interval Adaptive Adjustment Scheme for Green Communication in Event-Sparse IoT Systems

Author(s):  
Han Wang ◽  
Wei Liu ◽  
Neal N. Xiong ◽  
Shaobo Zhang ◽  
Tian Wang
Author(s):  
Yu-Han Chen ◽  
Shyue-Ming Tang ◽  
Kung-Jui Pai ◽  
Jou-Ming Chang
Keyword(s):  

2021 ◽  
Vol 154 ◽  
pp. 106099
Author(s):  
Qingkun Li ◽  
Lian Hou ◽  
Zhenyuan Wang ◽  
Wenjun Wang ◽  
Chao Zeng ◽  
...  

2011 ◽  
Vol 279 (1728) ◽  
pp. 592-600 ◽  
Author(s):  
F. H. I. D. Segers ◽  
G. Berishvili ◽  
B. Taborsky

Large egg size usually boosts offspring survival, but mothers have to trade off egg size against egg number. Therefore, females often produce smaller eggs when environmental conditions for offspring are favourable, which is subsequently compensated for by accelerated juvenile growth. How this rapid growth is modulated on a molecular level is still unclear. As the somatotropic axis is a key regulator of early growth in vertebrates, we investigated the effect of egg size on three key genes belonging to this axis, at different ontogenetic stages in a mouthbrooding cichlid ( Simochromis pleurospilus ). The expression levels of one of them, the growth hormone receptor ( GHR ), were significantly higher in large than in small eggs, but remarkably, this pattern was reversed after hatching: young originating from small eggs had significantly higher GHR expression levels as yolk sac larvae and as juveniles. GHR expression in yolk sac larvae was positively correlated with juvenile growth rate and correspondingly fish originating from small eggs grew faster. This enabled them to catch up fully in size within eight weeks with conspecifics from larger eggs. This is the first evidence for a potential link between egg size, an important maternal effect, and offspring gene expression, which mediates an adaptive adjustment in a relevant hormonal axis.


2012 ◽  
Vol 140 (3) ◽  
pp. 1014-1022 ◽  
Author(s):  
Tuomo Lauri ◽  
Jarmo Koistinen ◽  
Dmitri Moisseev

When making radar-based precipitation products, a radar measurement is commonly taken to represent the geographical location vertically below the contributing volume of the measurement sample. However, when wind is present during the fall of the hydrometeors, precipitation will be displaced horizontally from the geographical location of the radar measurement. Horizontal advection will introduce discrepancies between the radar-measured and ground level precipitation fields. The significance of the adjustment depends on a variety of factors related to the characteristics of the observed precipitation as well as those of the desired end product. In this paper the authors present an advection adjustment scheme for radar precipitation observations using estimated hydrometeor trajectories obtained from the High-Resolution Limited-Area Model (HIRLAM) MB71 NWP model data. They use the method to correct the operational Finnish radar composite and evaluate the significance of precipitation advection in typical Finnish conditions. The results show that advection distances on the order of tens of kilometers are consistently observed near the edge of the composite at ranges of 100–250 km from the nearest radar, even when using a low elevation angle of 0.3°. The Finnish wind climatology suggests that approximately 15% of single radar measurement areas are lost on average when estimating ground level rainfall if no advection adjustment is applied. For the Finnish composite, area reductions of approximately 10% have been observed, while the measuring area is extended downstream by a similar amount. Advection becomes increasingly important at all ranges in snowfall with maximum distances exceeding 100 km.


Symmetry ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 693
Author(s):  
Kvitoslava Obelovska ◽  
Olga Panova ◽  
Vincent Karovič

The performance of Wireless Local Area Network (WLAN) is highly dependent on the processes that are implemented in the Medium Access Control (MAC) sublayer regulated by the IEEE 802.11 standard. In turn, various parameters affect the performance of the MAC sublayer, the most important of which is the number of stations in the network and the offered load. With the massive growth of multimedia traffic, research of the network performance depending on traffic types is relevant. In this paper, we present the impact of a high-/low-priority traffic ratio on WLAN performance with different numbers of access categories. The simulation results show different impact of high-/low-priority traffic ratio on the performance of the MAC sublayer of wireless LANs depending on different network-sizes and on network conditions. Performance of the large network with two access categories and with the prevalent high-priority traffic is significantly higher than in the case of using four categories on the MAC sublayer. This allows us to conclude that the performance improvement of the large network with the prevalent high-priority traffic can be achieved by an adaptive adjustment of the access categories number on the MAC sublayer.


Sign in / Sign up

Export Citation Format

Share Document