Molecular response and evolution of plant anion transport systems to abiotic stress

Author(s):  
Wei Jiang ◽  
Tao Tong ◽  
Xuan Chen ◽  
Fenglin Deng ◽  
Fanrong Zeng ◽  
...  
Author(s):  
Daiane Carvalho Baía ◽  
Fábio L. Olivares ◽  
Daniel B. Zandonadi ◽  
Cleiton de Paula Soares ◽  
Riccardo Spaccini ◽  
...  

Abstract Background Plants primed by humic acids showed physiological and molecular response against different abiotic stresses without the presence of stressor agents (salinity, drought, heavy metal toxicity). It is plausible that humic acids themselves can act as chemical priming substances in plants. We hypothesized that humic acids can trigger the weak acids stress response in cell plants acidifying the cytosol and thus eliciting the transduction signalling response cascade. Methods The dose–response curves of maize seedlings roots with different concentrations of humic, acetic and salicylic acids determined the most active and inhibitory concentration. These data were further used to evaluate changes on intracellular pH using BCECF-AM probe (2,7-bis(2-carboxyethyl)-5(and 6)-carboxyfluorescein, acetoxymethyl ester) and differential transcription level of genes related to weak stress response in plants by qPCR real time. Results Humic acids like short chain organic acids decrease the intracellular pH showed by the increased fluorescence of BCECF probe. The drop in cytosolic pH promoted by humic acids was not transient. We observed a high level of protein kinases related to cell energy-sensing and transcription factors associated to transduction of stress signalling. Conclusion The humic acids can be considered as a chemical priming agent, since in the appropriate concentration they can induce the typical plant abiotic stress response of weak acids inducing plant acclimation and enhancing the abiotic stress tolerance.


Agronomy ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 1579
Author(s):  
Qari Muhammad Imran ◽  
Noreen Falak ◽  
Adil Hussain ◽  
Bong-Gyu Mun ◽  
Byung-Wook Yun

Plants, due to their sessile nature, face several environmental adversities. Abiotic stresses such as heat, cold, drought, heavy metals, and salinity are serious threats to plant production and yield. To cope with these stresses, plants have developed sophisticated mechanisms to avoid or resist stress conditions. A proper response to abiotic stress depends primarily on how plants perceive the stress signal, which in turn leads to initiation of signaling cascades and induction of resistance genes. New biotechnological tools such as RNA-seq and CRISPR-cas9 are quite useful in identifying target genes on a global scale, manipulating these genes to achieve tolerance, and helping breeders to develop stress-tolerant cultivars. In this review, we will briefly discuss the adverse effects of key abiotic stresses such as cold, heat, drought, and salinity. We will also discuss how plants sense various stresses and the importance of biotechnological tools in the development of stress-tolerant cultivars.


Sign in / Sign up

Export Citation Format

Share Document