sink hole
Recently Published Documents


TOTAL DOCUMENTS

56
(FIVE YEARS 13)

H-INDEX

5
(FIVE YEARS 1)

2021 ◽  
Author(s):  
Jan Blachowski ◽  
Miłosz Becker ◽  
Anna Buczyńska ◽  
Natalia Bugajska ◽  
Dominik Janicki ◽  
...  

<p>The area of the present day Muzalkow Arch Geopark located on the border of Poland and Germany was subjected to a long term mining of lignite and other rock raw materials that ceased in the 70’ties of the 20<sup>th</sup> Century. The present-day geomorphological landscape of the research area is characterised by numerous and differentiated forms of anthropogenic origin (e.g. artificial lakes, subsidence troughs, sink holes, waste heaps) associated with underground and subsequently opencast mining of lignite in complex geological and tectonic conditions that result from glaciotectonic processes of subsequent stages of accumulation and weathering. It is thought that the area is presently subjected to geodynamic processes associated with weathering of exposed areas (lignite outcrops and waste heaps), destruction of shallow underground workings (subsidence troughs, sink holes) and changing hydrogeological conditions of the rock mass. The scale of these secondary deformations is presently unknown and these processes pose a threat the present day tourist development of the area, such as: sudden development of discontinuous terrain deformations, slope instability, flooding and subsequent dying of vegetation, etc.<br>Geodetic surveying and remote sensing (terrestrial, aerial and satellite) observations have been employed, apart from other in-situ investigations (geophysical and geological prospecting), to study the processes in one of the former coal mining fields in the geopark.<br>In this study preliminary results of selected geodetic field investigations, i.e. terrestrial laser scanning of a sink hole that showed on the surface in Autumn 2019 and UAV photogrammetric monitoring of an artificial waste rock tips have been reported. It has been found, based on mapping of old mining maps in GIS, that the sink hole is directly related to old shallow underground workings. Maximum depth of the analysed sink hole below ground level is  5.5 m and volume of subsidence is 35 m<sup>3</sup>. The location is being monitored to check if the geometry changes in time.<br>Whereas, comparison of digital elevation models of the investigated waste heap (one of three measured so far) showed development of gully erosion and downward movement of the weathered material. The deposition of material at the bottom of the heap averaged over a dozen cm and maximum of over 50 cm for a half year Summer period (from 15.05.2020 to 07.11.2020).<br>The presented results constitute a first approximation of 3D mapping and modelling the post-mining deformations in glaciotectonic landscape and constitute part of an ongoing research project financed from the Polish National Science Centre OPUS funds (no 2019/33/B/ST10/02975).</p>


2021 ◽  
Vol 68 (2) ◽  
pp. 1949-1965
Author(s):  
Rajesh Kumar Dhanaraj ◽  
Lalitha Krishnasamy ◽  
Oana Geman ◽  
Diana Roxana Izdrui

Author(s):  
Mayada S. A. Mustafa ◽  
Borhanuddin M. Ali ◽  
Fadlee F. A. Rasid ◽  
Shaiful J. B. Hashim

A single tree topology is a commonly employed topology for wireless sensor networks (WSN) to connect sensors to one or more remote gateways. However, its many-to-one traffic routing pattern imposes heavy burden on downstream nodes, as the same routes are repeatedly used for packet transfer, from one or more upstream branches. The challenge is how to choose the most optimal routing paths that minimizes energy consumption across the entire network. This paper proposes a proactive energy awareness-based many-to-one traffic routing scheme to alleviate the above said problem referred to as Energy Balance-Based Energy Hole Alleviation in tree topology (EBEHA-T). This protocol combines updated status of variations in energy consumption pattern around sink-hole zones and distribution of joint nodes among the trees. With this approach, EBEHA-T proactively prevents sink-hole formation instead of just a reactive response after they have occurred. Performance evaluation of EBEHA-T against benchmark method RaSMaLai shows increased energy saving across the entire network and a marked improvement in energy consumption balance in energy-hole zones. This precludes energy hole formation and the consequent network partitioning, leading to improved network lifetime beyond that of the RasMaLai. OMNET++ network simulation software has been used for the evaluation.


2020 ◽  
Vol 68 (10) ◽  
pp. 2296
Author(s):  
Ramandeep Singh ◽  
Ashish Markan ◽  
Sabia Handa ◽  
Mohit Dogra

Sign in / Sign up

Export Citation Format

Share Document