Gas Deviation Factor Calculation Made Easy and Accurate Using an IR 4.0 Tool

2021 ◽  
Author(s):  
Nasser M. Al-Hajri ◽  
Akram R. Barghouti ◽  
Sulaiman T. Ureiga

Abstract Gas deviation factor (z-factor) and other gas reservoir fluid properties, such as formation volume factor, density, and viscosity, are normally obtained from Pressure-Volume-Temperature (PVT) experimental analysis. This process of reservoir fluid characterization usually requires collecting pressurized fluid samples from the wellbore to conduct the experimental work. The scope of this paper will provide an alternative methodology for obtaining the z-factor. An IR 4.0 tool that heavily utilizes software coding was developed. The advanced tool uses the novel apparent molecular weight profiling concept to achieve the paper objective timely and accurately. The developed tool calculates gas properties based on downhole gradient pressure and temperature data as inputs. The methodology is applicable to dry, wet or condensate gas wells. The gas equation of state is modified to solve numerically for the z-factor using the gradient survey pressure and temperature data. The numerical solution is obtained by applying an iterative computation scheme as described below:A gas apparent molecular weight value is initialized and then gas mixture specific gravity and pseudo-critical properties are calculated.Gas mixture pseudo-reduced properties are calculated from the measured pressure and temperature values at the reservoir depth.A first z-factor value is determined as a function of the pseudo-reduced gas properties.Gas pressure gradient is obtained at the reservoir depth from the survey and used to back-calculate a second z-factor value by applying the modified gas equation of state.Relative error between the two z factor values is then calculated and compared against a low predefined tolerance.The above steps are reiterated at different assumed gas apparent molecular weight values until the predefined tolerance is achieved. This numerical approach is computerized to perform the highest possible number of iterations and then select the z-factor value corresponding to the minimum error among all iterations. The proposed workflow has been applied on literature data with known reservoir gas properties, from PVT analysis, and showed an excellent prediction performance compared to laboratory analysis with less than 5% error.

2008 ◽  
Vol 11 (06) ◽  
pp. 1107-1116 ◽  
Author(s):  
Chengli Dong ◽  
Michael D. O'Keefe ◽  
Hani Elshahawi ◽  
Mohamed Hashem ◽  
Stephen M. Williams ◽  
...  

Summary Downhole fluid analysis (DFA) has emerged as a key technique for characterizing the distribution of reservoir-fluid properties and determining zonal connectivity across the reservoir. Information from profiling the reservoir fluids enables sealing barriers to be proved and compositional grading to be quantified; this information cannot be obtained from conventional wireline logs. The DFA technique has been based largely on optical spectroscopy, which can provide estimates of filtrate contamination, gas/oil ratio (GOR), pH of formation water, and a hydrocarbon composition in four groups: methane (C1), ethane to pentane (C2-5), hexane and heavier hydrocarbons (C6+), and carbon dioxide (CO2). For single-phase assurance, it is possible to detect gas liberation (bubblepoint) or liquid dropout (dewpoint) while pumping reservoir fluid to the wellbore, before filling a sample bottle. In this paper, a new DFA tool is introduced that substantially increases the accuracy of these measurements. The tool uses a grating spectrometer in combination with a filter-array spectrometer. The range of compositional information is extended from four groups to five groups: C1, ethane (C2), propane to pentane (C3-5), C6+, and CO2. These spectrometers, together with improved compositional algorithms, now make possible a quantitative analysis of reservoir fluid with greater accuracy and repeatability. This accuracy enables comparison of fluid properties between wells for the first time, thus extending the application of fluid profiling from a single-well to a multiwall basis. Field-based fluid characterization is now possible. In addition, a new measurement is introduced--in-situ density of reservoir fluid. Measuring this property downhole at reservoir conditions of pressure and temperature provides important advantages over surface measurements. The density sensor is combined in a package that includes the optical spectrometers and measurements of fluid resistivity, pressure, temperature, and fluorescence that all play a vital role in determining the exact nature of the reservoir fluid. Extensive tests at a pressure/volume/temperature (PVT) laboratory are presented to illustrate sensor response in a large number of live-fluid samples. These tests of known fluid compositions were conducted under pressurized and heated conditions to simulate reservoir conditions. In addition, several field examples are presented to illustrate applicability in different environments. Introduction Reservoir-fluid samples collected at the early stage of exploration and development provide vital information for reservoir evaluation and management. Reservoir-fluid properties, such as hydrocarbon composition, GOR, CO2 content, pH, density, viscosity, and PVT behavior are key inputs for surface-facility design and optimization of production strategies. Formation-tester tools have proved to be an effective way to obtain reservoir-fluid samples for PVT analysis. Conventional reservoir-fluid analysis is conducted in a PVT laboratory, and it usually takes a long time (months) before the results become available. Also, miscible contamination of a fluid sample by drilling-mud filtrate reduces the utility of the sample for subsequent fluid analyses. However, the amount of filtrate contamination can be reduced substantially by use of focused-sampling cleanup introduced recently in the next-generation wireline formation testers (O'Keefe et al. 2008). DFA tools provide results in real time and at reservoir conditions. Current DFA techniques use absorption spectroscopy of reservoir fluids in the visible-to-near-infrared (NIR) range. The formation-fluid spectra are obtained in real time, and fluid composition is derived from the spectra on the basis of C1, C2-5, C6+, and CO2; then, GOR of the fluid is estimated from the derived composition (Betancourt et al. 2004; Fujisawa et al. 2002; Dong et al. 2006; Elshahawi et al. 2004; Fujisawa et al. 2008; Mullins et al. 2001; Smits et al. 1995). Additionally, from the differences in absorption spectrum between reservoir fluid and filtrate of oil-based mud (OBM) or water-based mud (WBM), fluid-sample contamination from the drilling fluid is estimated (Mullins et al. 2000; Fadnes et al. 2001). With the DFA technique, reservoir-fluid samples are analyzed before they are taken, and the quality of fluid samples is improved substantially. The sampling process is optimized in terms of where and when to sample and how many samples to take. Reservoir-fluid characterization from fluid-profiling methods often reveals fluid compositional grading in different zones, and it also helps to identify reservoir compartmentalization (Venkataramanan et al. 2008). A next-generation tool has been developed to improve the DFA technique. This DFA tool includes new hardware that provides more-accurate and -detailed spectra, compared to the current DFA tools, and includes new methods of deriving fluid composition and GOR from optical spectroscopy. Furthermore, the new DFA tool includes a vibrating sensor for direct measurement of fluid density and, in certain environments, viscosity. The new DFA tool provides reservoir-fluid characterization that is significantly more accurate and comprehensive compared to the current DFA technology.


1990 ◽  
Vol 63 (03) ◽  
pp. 499-504 ◽  
Author(s):  
A Electricwala ◽  
L Irons ◽  
R Wait ◽  
R J G Carr ◽  
R J Ling ◽  
...  

SummaryPhysico-chemical properties of recombinant desulphatohirudin expressed in yeast (CIBA GEIGY code No. CGP 39393) were reinvestigated. As previously reported for natural hirudin, the recombinant molecule exhibited abnormal behaviour by gel filtration with an apparent molecular weight greater than that based on the primary structure. However, molecular weight estimation by SDS gel electrophoresis, FAB-mass spectrometry and Photon Correlation Spectroscopy were in agreement with the theoretical molecular weight, with little suggestion of dimer or aggregate formation. Circular dichroism studies of the recombinant molecule show similar spectra at different pH values but are markedly different from that reported by Konno et al. (13) for a natural hirudin-variant. Our CD studies indicate the presence of about 60% beta sheet and the absence of alpha helix in the secondary structure of recombinant hirudin, in agreement with the conformation determined by NMR studies (17)


1975 ◽  
Vol 33 (03) ◽  
pp. 553-563 ◽  
Author(s):  
B Østerud ◽  
K Laake ◽  
H Prydz

SummaryThe activation of factor IX purified from human plasma has been studied. Factor XIa and kallikrein separately activated factor IX to factor IXa. In both cases factor IX a had an apparent molecular weight of about 42–45000 in sodium dodecyl sul-phate-polyacrylamide disc gel electrophoresis compared with a molecular weight of about 70000 for the native factor IX. The activation by XIa required Ca2+-ions whereas Ca2+-ions did not influence the activation by kallikrein. A mixture of tissue thromboplastin and factor VII or RusselPs-viper venom alone did not activate factor IX. Trypsin activated and plasmin inactivated factor IX.


1977 ◽  
Vol 72 (1) ◽  
pp. 194-208 ◽  
Author(s):  
L D Hodge ◽  
P Mancini ◽  
F M Davis ◽  
P Heywood

A subnuclear fraction has been isolated from HeLa S3 nuclei after treatment with high salt buffer, deoxyribonuclease, and dithiothreitol. This fraction retains the approximate size and shape of nuclei and resembles the nuclear matrix recently isolated from rat liver nuclei. Ultrastructural and biochemical analyses indicate that this structure consists of nonmembranous elements as well as some membranous elements. Its chemical composition is 87% protein, 12% phospholipid, 1% DNA, and 0.1% RNA by weight. The protein constituents are resolved in SDS-polyacrylamide slab gels into 30-35 distinguishable bands in the apparent molecular weight range of 14,000 - 200,000 with major peptides at 14,000 - 18,000 and 45,000 - 75,000. Analysis of newly synthesized polypeptides by cylindrical gel electrophoresis reveals another cluster in the 90,000-130,000 molecular weight range. Infection with adenovirus results in an altered polypeptide profile. Additional polypeptides with apparent molecular weights of 21,000, 23,000, and 92,000 become major components by 22 h after infection. Concomitantly, some peptides in the 45,000-75,000 mol wt range become less prominent. In synchronized cells the relative staining capacity of the six bands in the 45,000-75,000 mol wt range changes during the cell cycle. Synthesis of at least some matrix polypeptides occures in all phases of the cell cycle, although there is decreased synthesis in late S/G2. In the absence of protein synthesis after cell division, at least some polypeptides in the 45,000-75,000 mol wt range survive nuclear dispersal and subsequent reformation during mitosis. The possible significance of this subnuclear structure with regard to structure-function relationships within the nucleus during virus replication and during the life cycle of the cell is discussed.


1988 ◽  
Vol 152 (1-2) ◽  
pp. 171-174 ◽  
Author(s):  
Yoshihiro Nakata ◽  
Chie Hiraoka ◽  
Tomio Segawa

2004 ◽  
Vol 78 (1) ◽  
pp. 47-50 ◽  
Author(s):  
X.-C. Long ◽  
M. Bahgat ◽  
K. Chlichlia ◽  
A. Ruppel ◽  
Y.-L. Li

AbstractSchistosoma japonicumandS. mansoniwere tested for reactivity with an anti-inducible nitric oxide (iNOS) antibody and the distribution of iNOS was studied by immunofluorescent tests in different stages of the parasites. Reactivity was associated with the tegument in both larval schistosomes (sporocysts and cercariae) and eggs. With adult worms, the majority of the immunofluorescence was predominantly subtegumental inS. japonicumand parenchymal inS. mansoni. Fluorescence was also observed in host tissues (snails and mouse liver). In Western blots, the enzyme ofS. japonicumhad an apparent molecular weight of about 210 kDa. The possible role of worm and host iNOS in the parasite–host interrelation remains to be clarified.


1983 ◽  
Vol 50 (4) ◽  
pp. 469-480 ◽  
Author(s):  
Paul A. Grieve ◽  
Barry J. Kitchen ◽  
John R. Dulley ◽  
John Bartley

SUMMARYAn extract ofKluyveromyces lactis416 and a β-galactosidase preparation (Maxilact 40000) contaminated with proteinase, showed similar pH profiles of caseinolytic activity. Similar modes of casein hydrolysis (κ-, > αs-, ≥ β-) were observed at pH 5·0 (the pH of Cheddar cheese), without detection of bitterness. The contaminated Maxilact preparation contained similar proteinase types to those detected in an autolysate ofK. lactis. Both the autolysate and the Maxilact preparation contained acid endopeptidase (proteinase A), serine endopeptidase (proteinase B) and serine exopeptidase (carboxypeptidase Y) activities. Some aminopeptidase activity was also detected in both preparations. There were some differences in apparent molecular weight and charge properties between proteinase A and B and carboxypeptidase Y from the 2 proteinase sources.


1985 ◽  
Vol 5 (5) ◽  
pp. 1093-1099
Author(s):  
R J Schmidt ◽  
N W Gillham ◽  
J E Boynton

In pulse-chase experiments in which log-phase cells of Chlamydomonas reinhardtii were labeled in vivo for 5 min with H2(35)SO4, fluorographs of immunoprecipitates from whole cell extracts revealed that chloroplast ribosomal proteins L-2, L-6, L-21, and L-29, which are made in the cytosol and imported, appeared in their mature forms. However, in the case of chloroplast ribosomal protein L-18, which is also made in the cytoplasm and imported, a prominent precursor with an apparent molecular weight of 17,000 was found at the end of a 5-min pulse. This precursor was processed to its mature size (apparent molecular weight of 15,500) within the first 5 min of the subsequent chase. As determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, the precursor to L-18 formed in vivo was 1.5 kilodaltons smaller than the primary product detected in translations of Chlamydomonas polyadenylated RNA in vitro. Upon a 10-min incubation with a postribosomal supernatant from Chlamydomonas, the 18,500-dalton precursor detected in vitro could be partially converted into a polypeptide that comigrated with the 17,000-dalton precursor detected in extracts of cells labeled in vivo. Under conditions in which the total amounts of chloroplast proteins had been reduced and cells were made to synthesize ribosomes rapidly, the apparent half-life of the 17,000-dalton precursor was extended over that seen in log-phase cells. When chloroplast protein synthesis was inhibited with lincomycin for 3 h before labeling under these conditions, the 17,000-dalton L-18 precursor but not the mature form was found, and the precursor was slowly degraded during a 60-min chase. When cells were placed in the dark for 3 h before labeling, processing of this precursor to the mature form appeared unaffected, but the chloroplast-synthesized ribosomal protein L-26 was detected, indicating that chloroplast protein synthesis was still occurring. We interpret these results to indicate that the maturation of protein L-18 in vivo involves at least two processing steps, one of which depends on a protein made on chloroplast ribosomes.


Sign in / Sign up

Export Citation Format

Share Document