scholarly journals Blade Envelopes Part I: Concept and Methodology

2021 ◽  
pp. 1-24
Author(s):  
Chun Yui Wong ◽  
Pranay Seshadri ◽  
Ashley Scillitoe ◽  
Andrew Duncan ◽  
Geoffrey T. Parks

Abstract Blades manufactured through flank and point milling will likely exhibit geometric variability. Gauging the aerodynamic repercussions of such variability, prior to manufacturing a component, is challenging enough, let alone trying to predict what the amplified impact of any in-service degradation will be. While rules of thumb that govern the tolerance band can be devised based on expected boundary layer characteristics at known regions and levels of degradation, it remains a challenge to translate these insights into quantitative bounds for manufacturing. In this work, we tackle this challenge by leveraging ideas from dimension reduction to construct low-dimensional representations of aerodynamic performance metrics. These low-dimensional models can identify a subspace which contains designs that are invariant in performance -- the inactive subspace. By sampling within this subspace, we design techniques for drafting manufacturing tolerances and for quantifying whether a scanned component should be used or scrapped. We introduce the blade envelope as a computational manufacturing guide for a blade. In this paper, the first of two parts, we discuss its underlying concept and detail its computational methodology, assuming one is interested only in the single objective of ensuring that the loss of all manufactured blades remains constant. To demonstrate the utility of our ideas we devise a series of computational experiments with the Von Karman Institute's LS89 turbine blade.

Sensors ◽  
2021 ◽  
Vol 21 (8) ◽  
pp. 2758
Author(s):  
Alberto Taffelli ◽  
Sandra Dirè ◽  
Alberto Quaranta ◽  
Lucio Pancheri

Photodetectors based on transition metal dichalcogenides (TMDs) have been widely reported in the literature and molybdenum disulfide (MoS2) has been the most extensively explored for photodetection applications. The properties of MoS2, such as direct band gap transition in low dimensional structures, strong light–matter interaction and good carrier mobility, combined with the possibility of fabricating thin MoS2 films, have attracted interest for this material in the field of optoelectronics. In this work, MoS2-based photodetectors are reviewed in terms of their main performance metrics, namely responsivity, detectivity, response time and dark current. Although neat MoS2-based detectors already show remarkable characteristics in the visible spectral range, MoS2 can be advantageously coupled with other materials to further improve the detector performance Nanoparticles (NPs) and quantum dots (QDs) have been exploited in combination with MoS2 to boost the response of the devices in the near ultraviolet (NUV) and infrared (IR) spectral range. Moreover, heterostructures with different materials (e.g., other TMDs, Graphene) can speed up the response of the photodetectors through the creation of built-in electric fields and the faster transport of charge carriers. Finally, in order to enhance the stability of the devices, perovskites have been exploited both as passivation layers and as electron reservoirs.


Author(s):  
Longxin Zhang ◽  
Shaowen Chen ◽  
Hao Xu ◽  
Jun Ding ◽  
Songtao Wang

Compared with suction slots, suction holes are (1) flexible in distribution; (2) alterable in size; (3) easy to fabricate and (4) high in strength. In this paper, the numerical and experimental studies for a high turning compressor cascade with suction air removed by using suction holes in the end-wall at a low Mach numbers are carried out. The main objective of the investigation is to study the influence of different suction distributions on the aerodynamic performance of the compressor cascade and to find a better compound suction scheme. A numerical model was first made and validated by comparing with the experimental results. The computed flow visualization and exit parameter distribution showed a good agreement with experimental data. Second, the model was then used to simulate the influence of different suction distributions on the aerodynamic performance of the compressor cascade. A better compound suction scheme was obtained by summarizing numerical results and tested in a low speed wind tunnel. As a result, the compound suction scheme can be used to significantly improve the performance of the compressor cascade because the corner separation gets further suppressed.


2020 ◽  
Vol 92 (4) ◽  
pp. 611-620
Author(s):  
Ryszard Szwaba ◽  
Piotr Kaczyński ◽  
Piotr Doerffer

Purpose The purpose of this paper is to study experimentally the effect of transition and also the roughness height on the flow structure of the shock wave boundary layer interaction in the blades passage of a compressor cascade. Design/methodology/approach A model of a turbine compressor passage was designed and assembled in a transonic wind tunnel. In the experiment, the distributed roughness with different heights and locations was used to induce transition upstream of the shock wave. Findings Recommendation regarding the roughness parameters for the application depends on what is more important as goal, whether the reduction of losses or unsteadiness. In case if more important are the losses reduction, a good choice for the roughness location seems to be the one close to the shock wave position. Research limitations/implications The knowledge gained by this paper will enable the implementation of an effective laminar flow technology for engines in which the interaction of a laminar boundary layer with a shock wave takes place in the propulsion system and causes severe problems. Originality/value The paper focuses on the influence of the boundary layer transition induced by different roughness values and locations on aerodynamic performance of a compressor cascade. Very valuable results were obtained in the roughness application for the boundary layer transition control, demonstrating a positive effect in changing the nature of the interaction and also some negative influence in case of oversized roughness height, which cannot be found in the existing literature.


2018 ◽  
Vol 141 (4) ◽  
Author(s):  
Natalie R. Smith ◽  
Timothy C. Allison ◽  
Jason C. Wilkes ◽  
Christopher Clarke ◽  
Michael Cave

Full-thermal heat-soak of machinery is vital for acquiring accurate aerodynamic performance data, but this process often requires significant testing time to allow all facility components to reach a steady-state temperature. Even still, there is the potential for heat loss in a well-insulated facility, and this can lead to inaccurate results. The implementation of a torquemeter to calculate performance metrics, such as isentropic efficiency, has two potential advantages: (1) the method is not susceptible to effects due to thermal heat loss in the facility, and (2) a torquemeter directly measures actual torque, and thus work, input, which eliminates the need to fully heat-soak to measure the actual enthalpy rise of the gas. This paper presents a comparison of aerodynamic performance metrics calculated both from data acquired with thermal measurements as well as from a torquemeter. These tests were conducted over five speedlines for a shrouded impeller in the Southwest Research Institute Single Stage Test Rig facility. Isentropic efficiency calculated from the torquemeter was approximately 1–2 efficiency points lower than the isentropic efficiency based on thermal measurements. This corresponds to approximately 0.5–1 °C in heat loss in the discharge collector and piping. Furthermore, observations from three full-thermal heat-soak points indicate the significant difference in time required to reach steady-state performance within measurement uncertainty tolerances between the torque-based and thermal-based methods. This comparison, while largely suspected, has not yet been studied in previous publications.


Author(s):  
Natalie R. Smith ◽  
Christopher Clarke ◽  
Timothy C. Allison ◽  
Michael Cave ◽  
Jason C. Wilkes

Full-thermal heat-soak of machinery is vital to acquiring accurate aerodynamic performance data, but this process often requires significant testing time to allow for all facility components to reach a steady state temperature. Even still, there is the potential for heat loss in a well-insulated facility, and this can lead to inaccurate results. The implementation of a torquemeter to calculate performance metrics, such as isentropic efficiency, has two potential advantages: 1) the method is not susceptible to effects due to thermal heat loss in the facility, and 2) a torquemeter directly measures actual torque, and thus work, input, which eliminates the need to fully heat-soak to measure the actual enthalpy rise of the gas. This paper presents a comparison of aerodynamic performance metrics calculated both from data acquired with thermal measurements as well as from a torquemeter. These tests were conducted over five speedlines for a shrouded impeller in the Southwest Research Institute Single Stage Test Rig facility. Isentropic efficiency calculated from the torquemeter was approximately 1–2 efficiency points lower than the isentropic efficiency based on thermal measurements. This corresponds to approximately 0.5–1°C in heat loss in the discharge collector and piping. Furthermore, observations from three full-thermal heat-soak points indicate the significant difference in time required to reach steady state performance within measurement uncertainty tolerances between the torque-based and thermal-based methods. This comparison, while largely suspected, has not yet been studied in previous publications.


2016 ◽  
Vol 20 (suppl. 3) ◽  
pp. 669-676
Author(s):  
Di Zhang ◽  
Ma Jiao-Bin ◽  
Qi Jing

The aerodynamic performance of blade affects the vibration characteristics and stable operation of turbomachinery closely. The aerodynamic performance of turbine stage can be improved by using swept blade. In this paper, the RANS method and the RNG k-? turbulence mode were adopted to investigate the unsteady flow characteristics and excitation force of swept blade stage. According to the results, for the swept blade, the fluid of boundary layer shifts in radial direction due to the influence of geometric construction. It is observed that there is similar wake development for several kinds of stators, and the wake has a notable effect on the boundary layer of the rotor blades. When compared with straight blade, pressure fluctuation of forward-swept blade is decreased while the pressure fluctuation of backward-swept blade is increased. The axial and tangential fundamental frequency excitation force factors of 15?forward-swept blade are 0.139 and 0.052 respectively, which are the least, and all excitation force factors are in the normal range. The excitation factor of the forward-swept blade is decreased compared with straight blade, and the decreasing percentage is closely related to the swept angle. As for backward-swept blades, the situation is the other way around. Additionally, the change of axial excitation factor is more obvious. So the vibration reduction performance of forward-swept blade is better.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Taylor Miller ◽  
Keval Patel ◽  
Coralis Rodriguez ◽  
Eric V. Stabb ◽  
Stephen J. Hagen

AbstractMany pheromone sensing bacteria produce and detect more than one chemically distinct signal, or autoinducer. The pathways that detect these signals are typically noisy and interlocked through crosstalk and feedback. As a result, the sensing response of individual cells is described by statistical distributions that change under different combinations of signal inputs. Here we examine how signal crosstalk reshapes this response. We measure how combinations of two homoserine lactone (HSL) input signals alter the statistical distributions of individual cell responses in the AinS/R- and LuxI/R-controlled branches of the Vibrio fischeri bioluminescence pathway. We find that, while the distributions of pathway activation in individual cells vary in complex fashion with environmental conditions, these changes have a low-dimensional representation. For both the AinS/R and LuxI/R branches, the distribution of individual cell responses to mixtures of the two HSLs is effectively one-dimensional, so that a single tuning parameter can capture the full range of variability in the distributions. Combinations of crosstalking HSL signals extend the range of responses for each branch of the circuit, so that signals in combination allow population-wide distributions that are not available under a single HSL input. Dimension reduction also simplifies the problem of identifying the HSL conditions to which the pathways and their outputs are most sensitive. A comparison of the maximum sensitivity HSL conditions to actual HSL levels measured during culture growth indicates that the AinS/R and LuxI/R branches lack sensitivity to population density except during the very earliest and latest stages of growth respectively.


Sign in / Sign up

Export Citation Format

Share Document