scholarly journals Beyondcell: targeting cancer therapeutic heterogeneity in single-cell RNA-seq data

2021 ◽  
Vol 13 (1) ◽  
Author(s):  
Coral Fustero-Torre ◽  
María José Jiménez-Santos ◽  
Santiago García-Martín ◽  
Carlos Carretero-Puche ◽  
Luis García-Jimeno ◽  
...  

AbstractWe present Beyondcell, a computational methodology for identifying tumour cell subpopulations with distinct drug responses in single-cell RNA-seq data and proposing cancer-specific treatments. Our method calculates an enrichment score in a collection of drug signatures, delineating therapeutic clusters (TCs) within cellular populations. Additionally, Beyondcell determines the therapeutic differences among cell populations and generates a prioritised sensitivity-based ranking in order to guide drug selection. We performed Beyondcell analysis in five single-cell datasets and demonstrated that TCs can be exploited to target malignant cells both in cancer cell lines and tumour patients. Beyondcell is available at: https://gitlab.com/bu_cnio/beyondcell.

2021 ◽  
Author(s):  
Coral Fustero-Torre ◽  
María José Jiménez-Santos ◽  
Santiago García-Martín ◽  
Carlos Carretero-Puche ◽  
Luis García-Jimeno ◽  
...  

We present Beyondcell (https://gitlab.com/bu_cnio/beyondcell/), a computational methodology for identifying tumour cell subpopulations with distinct drug responses in single-cell RNA-seq data and proposing cancer-specific treatments. Our method calculates an enrichment score in a collection of drug signatures, delineating therapeutic clusters (TCs) within cellular populations. Additionally, Beyondcell determines therapeutic differences among cell populations, and generates a prioritised ranking of the differential sensitivity drugs between chosen conditions to guide drug selection. We performed Beyondcell analysis in four single-cell datasets to validate our score and to demonstrate that TCs can be exploited to target malignant cells both in cancer cell lines and tumour patients.


Blood ◽  
2020 ◽  
Vol 136 (Supplement 1) ◽  
pp. 29-29
Author(s):  
Lisa Wei ◽  
Diane Trinh ◽  
Rhonda E. Ries ◽  
Dan Jin ◽  
Richard D. Corbett ◽  
...  

Pediatric AML is a heterogeneous disease in which treatment resistance remains an unsolved problem that is responsible for most deaths (Yeung and Radich 2017). Recently we have come to learn that resistance may be driven by mechanisms that extend beyond somatic mutations and DNA methylation changes (Ghasemi et al. 2020; van Galen et al. 2019; Bell et al. 2019). Transcriptional changes within specific primitive and committed cell types in AML tumours, which may be accompanied by alterations in chromatin structure and topology, can also contribute to disease progression (Ghasemi et al. 2020). To study such changes at the single-cell level, we analyzed single-cell RNA-seq (scRNA-seq) and matched scATAC-seq data from primary, remission and/or relapse samples obtained from three pediatric AML patients enrolled in the AAML1031 clinical trial (Alpenc et al. 2016) (Figure 1). Using the 10X Genomics single-cell platforms, we profiled a total of 39,738 cells using scRNA-seq (~4,826 cells per sample, 1,571 genes per cell), and 46,580 cells and 197,128 peaks using scATAC-seq (~6,718 cells per sample, 5,628 unique reads per cell). We then integrated these data types to determine the extent to which these two modalities corroborated and/or complemented each other in analyses of these longitudinally-obtained samples. Cell subpopulations detected in scRNA-seq through Leiden clustering on a k-nearest neighbor graph were generally consistent with recent observations of malignant and normal cell types detected in the bone marrow and peripheral blood compartments (van Galen et al. 2019; Hay et al. 2018). Malignant-like subpopulations at primary and relapse stages exhibited similar levels of cell type diversity along the myeloid lineage. These included hematopoietic stem-like cells, progenitors, granulocyte-monocyte progenitors, monocytes and dendritic cell-like subpopulations. Remission samples appeared to contain normal blood cell types including natural killers (NK), B and T cells, platelets and erythrocytes, consistent with the clearance of blasts. However, we also observed putative malignant-like conventional dendritic cell subpopulations at remission (50% and 16% in the respective samples), noting that these cells displayed increased expression of genes involved in antigen presentation and lysosomal protein processing. To integrate scATAC-seq with scRNA-seq data we performed clustering of transformed and reduced scATAC-seq data through iterative latent semantic indexing (Granja et al. 2020), and aligned cells in scATAC-seq to cells from scRNA-seq data using canonical correlation analysis (Stuart et al. 2019). We observed similar patterns of T cell expansion, presence of monocyte-like populations and NK cells at remission in the scATAC-seq data. However, scRNA-seq subpopulations dominated by malignant-like cells showed variability in mapping to distinctive chromatin states, with a few notable exceptions (Figures 2 and 3). One such exception is a subpopulation in scRNA-seq, found mostly at relapse, marked by high expression of genes involved in proliferation and growth factor-mediated cellular processes such as YBX3 (binds to GM-CSF promoter), CYTL1, and EGFL7 (regulator of vasculogenesis) (Figures 3 and 4). Cells within this subpopulation mapped to two scATAC-seq clusters whose significantly more highly accessible regions were enriched for functional processes such as blood vessel remodeling and neutrophil/granulocyte activation (Figure 4). These observations are consistent with recent evidence that AML tumour cells can activate the immune system to acquire resistance (Melgar et al. 2020). The scRNA-seq subpopulation, however, did not display high expression of myeloid/granulocyte factors such as CD15, ELANE, and MPO (Figure 4), perhaps consistent with the notion that such transcriptional programs may be primed but not yet activated within these malignant cells. We thus evaluated the potential of scATAC-seq to complement scRNA-seq in understanding transcriptional changes within cell types in AML tumours. We observed that normal cell types and specific malignant cell states could occupy distinctive chromatin states. Through integrative analyses, we conclude that scATAC-seq results can add additional information to complement scRNA-seq data, including identifying nascent transcriptional programs that may be poised for activation within malignant cells. Disclosures No relevant conflicts of interest to declare.


Cells ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 3126
Author(s):  
Dominik Saul ◽  
Robyn Laura Kosinsky

The human aging process is associated with molecular changes and cellular degeneration, resulting in a significant increase in cancer incidence with age. Despite their potential correlation, the relationship between cancer- and ageing-related transcriptional changes is largely unknown. In this study, we aimed to analyze aging-associated transcriptional patterns in publicly available bulk mRNA-seq and single-cell RNA-seq (scRNA-seq) datasets for chronic myelogenous leukemia (CML), colorectal cancer (CRC), hepatocellular carcinoma (HCC), lung cancer (LC), and pancreatic ductal adenocarcinoma (PDAC). Indeed, we detected that various aging/senescence-induced genes (ASIGs) were upregulated in malignant diseases compared to healthy control samples. To elucidate the importance of ASIGs during cell development, pseudotime analyses were performed, which revealed a late enrichment of distinct cancer-specific ASIG signatures. Notably, we were able to demonstrate that all cancer entities analyzed in this study comprised cell populations expressing ASIGs. While only minor correlations were detected between ASIGs and transcriptome-wide changes in PDAC, a high proportion of ASIGs was induced in CML, CRC, HCC, and LC samples. These unique cellular subpopulations could serve as a basis for future studies on the role of aging and senescence in human malignancies.


2020 ◽  
Author(s):  
Viacheslav Mylka ◽  
Jeroen Aerts ◽  
Irina Matetovici ◽  
Suresh Poovathingal ◽  
Niels Vandamme ◽  
...  

ABSTRACTMultiplexing of samples in single-cell RNA-seq studies allows significant reduction of experimental costs, straightforward identification of doublets, increased cell throughput, and reduction of sample-specific batch effects. Recently published multiplexing techniques using oligo-conjugated antibodies or - lipids allow barcoding sample-specific cells, a process called ‘hashing’. Here, we compare the hashing performance of TotalSeq-A and -C antibodies, custom synthesized lipids and MULTI-seq lipid hashes in four cell lines, both for single-cell RNA-seq and single-nucleus RNA-seq. Hashing efficiency was evaluated using the intrinsic genetic variation of the cell lines. Benchmarking of different hashing strategies and computational pipelines indicates that correct demultiplexing can be achieved with both lipid- and antibody-hashed human cells and nuclei, with MULTISeqDemux as the preferred demultiplexing function and antibody-based hashing as the most efficient protocol on cells. Antibody hashing was further evaluated on clinical samples using PBMCs from healthy and SARS-CoV-2 infected patients, where we demonstrate a more affordable approach for large single-cell sequencing clinical studies, while simultaneously reducing batch effects.


2019 ◽  
Vol 20 (1) ◽  
Author(s):  
Rebekka Wegmann ◽  
Marilisa Neri ◽  
Sven Schuierer ◽  
Bilada Bilican ◽  
Huyen Hartkopf ◽  
...  

2020 ◽  
Author(s):  
Matthew N. Bernstein ◽  
Zijian Ni ◽  
Michael Collins ◽  
Mark E. Burkard ◽  
Christina Kendziorski ◽  
...  

AbstractBackgroundSingle-cell RNA-seq (scRNA-seq) enables the profiling of genome-wide gene expression at the single-cell level and in so doing facilitates insight into and information about cellular heterogeneity within a tissue. Perhaps nowhere is this more important than in cancer, where tumor and tumor microenvironment heterogeneity directly impact development, maintenance, and progression of disease. While publicly available scRNA-seq cancer datasets offer unprecedented opportunity to better understand the mechanisms underlying tumor progression, metastasis, drug resistance, and immune evasion, much of the available information has been underutilized, in part, due to the lack of tools available for aggregating and analysing these data.ResultsWe present CHARacterizing Tumor Subpopulations (CHARTS), a computational pipeline and web application for analyzing, characterizing, and integrating publicly available scRNA-seq cancer datasets. CHARTS enables the exploration of individual gene expression, cell type, malignancy-status, differentially expressed genes, and gene set enrichment results in subpopulations of cells across multiple tumors and datasets.ConclusionCHARTS is an easy to use, comprehensive platform for exploring single-cell subpopulations within tumors across the ever-growing collection of public scRNA-seq cancer datasets. CHARTS is freely available at charts.morgridge.org.


2021 ◽  
Vol 12 ◽  
Author(s):  
Lixing Huang ◽  
Ying Qiao ◽  
Wei Xu ◽  
Linfeng Gong ◽  
Rongchao He ◽  
...  

Fish is considered as a supreme model for clarifying the evolution and regulatory mechanism of vertebrate immunity. However, the knowledge of distinct immune cell populations in fish is still limited, and further development of techniques advancing the identification of fish immune cell populations and their functions are required. Single cell RNA-seq (scRNA-seq) has provided a new approach for effective in-depth identification and characterization of cell subpopulations. Current approaches for scRNA-seq data analysis usually rely on comparison with a reference genome and hence are not suited for samples without any reference genome, which is currently very common in fish research. Here, we present an alternative, i.e. scRNA-seq data analysis with a full-length transcriptome as a reference, and evaluate this approach on samples from Epinephelus coioides-a teleost without any published genome. We show that it reconstructs well most of the present transcripts in the scRNA-seq data achieving a sensitivity equivalent to approaches relying on genome alignments of related species. Based on cell heterogeneity and known markers, we characterized four cell types: T cells, B cells, monocytes/macrophages (Mo/MΦ) and NCC (non-specific cytotoxic cells). Further analysis indicated the presence of two subsets of Mo/MΦ including M1 and M2 type, as well as four subsets in B cells, i.e. mature B cells, immature B cells, pre B cells and early-pre B cells. Our research will provide new clues for understanding biological characteristics, development and function of immune cell populations of teleost. Furthermore, our approach provides a reliable alternative for scRNA-seq data analysis in teleost for which no reference genome is currently available.


Sign in / Sign up

Export Citation Format

Share Document