Silicocarbonatitic melt inclusions in fluorapatite from the Yates prospect, Otter Lake, Québec: Evidence of marble anatexis in the central metasedimentary belt of the Grenville Province

2019 ◽  
Vol 57 (5) ◽  
pp. 583-604 ◽  
Author(s):  
Dirk Schumann ◽  
Robert F. Martin ◽  
Sebastian Fuchs ◽  
Jeffrey de Fourestier

Abstract We have investigated a locality very well known to mineral collectors, the Yates U-Th prospect near Otter Lake, Québec. There, dikes of orange to pink calcite enclose euhedral prisms of fluorapatite, locally aligned. Early investigators pointed out the importance of micro-inclusions in the prisms. We describe and image the micro-inclusions in two polished sections of fluorapatite prisms, one of them with a millimetric globule of orange calcite similar to that in the matrix. We interpret the globule to have been an inclusion of melt trapped during growth. Micro-globules disseminated in the fluorapatite are interpreted to have crystallized in situ from aliquots of the boundary-layer melt enriched in constituents rejected by the fluorapatite; the micro-globules contain a complex jigsawed assemblage of carbonate, silicate, and sulfate minerals. Early minerals to crystallize are commonly partly dissolved and partly replaced by lower-temperature phases. Such jigsawed assemblages seem to be absent in the carbonate matrix sampled away from the fluorapatite prisms. The pressure and temperature attained at the Rigolet stage of the Grenville collisional orogeny were conducive to the anatexis of marble in the presence of H2O. The carbonate melt is considered to have become silicocarbonatitic by assimilation of the enclosing gneisses, which were also close to their melting point. Degassing was important, and the melt froze quickly. The evidence points to a magmatic origin for the carbonate dikes and the associated clinopyroxenite, rather than a skarn-related association.

Minerals ◽  
2019 ◽  
Vol 9 (10) ◽  
pp. 613 ◽  
Author(s):  
Martin ◽  
Schumann

The Parker phlogopite mine, located near Notre-Dame-du-Laus, Quebec, 74 km north of Ottawa, is well known among mineral collectors for its centimetric euhedral crystals of black spinel. Among the dozens of phlogopite mines active in the early 1900s in the Mont-Laurier–Bancroft corridor in the Central Metasedimentary Belt of the Grenville Province, the Parker mine is exceptional because of the association of forsterite + spinel with phlogopite. Euhedral crystals of these minerals are found “frozen” in a carbonate matrix. The carbonate dike and segregations are associated with spinel-rich dunite that contains accessory diopside, phlogopite, and pargasite, as well as ilmenite and apatite. The interstitial melt crystallized to calcite + dolomite. Hematite appeared as flakes in the melt owing to net loss of hydrogen, and the spinel underwent oxidation-induced exsolution. Our spinel crystal entrapped a domain of carbonate during growth. It also entrapped globules of boundary-layer melt that crystallized to a carbonate + sulfate + phosphate + silicate + oxide assemblage. Such globules, where present in the cumulate, are more pristine than in the coarse crystal of spinel, i.e., less affected by a hydrothermal overprint. We contend that the carbonate melt ultimately formed by the hydrous melting of marble, as supported by oxygen-isotope data on all major minerals. Melting occurred 1140 million years ago, at a time of tectonic relaxation following the Shawinigan compressive stresses.


Materials ◽  
2019 ◽  
Vol 12 (21) ◽  
pp. 3536
Author(s):  
Na Li ◽  
Ruizhi Jia ◽  
Hongmei Zhang ◽  
Wei Sha ◽  
Yan Li ◽  
...  

Almost all copper in scrap steel is recovered, so research on copper-bearing steel has profound practical significance. The surface enrichment of copper occurs in all copper-bearing steels studied in this paper after being heated at high temperature. In-situ oxidation-induced copper coatings were discovered on the descaled copper-bearing steels after heating at around 1150 °C for 2 h in air. Scattered copper precipitates in or under rust after heating at a lower temperature. A new concept was created using in-situ composites prepared by direct oxidation of matrix, and there was no bonding problem found between the coating and the matrix. The enrichment form of copper in steel is related to the oxidation rate, oxidation time, heating temperature and copper content.


2020 ◽  
Vol 9 (1) ◽  
pp. 478-488 ◽  
Author(s):  
Yun-Fei Zhang ◽  
Fei-Peng Du ◽  
Ling Chen ◽  
Ka-Wai Yeung ◽  
Yuqing Dong ◽  
...  

AbstractElectroactive hydrogels have received increasing attention due to the possibility of being used in biomimetics, such as for soft robotics and artificial muscles. However, the applications are hindered by the poor mechanical properties and slow response time. To address these issues, in this study, supramolecular ionic polymer–carbon nanotube (SIPC) composite hydrogels were fabricated via in situ free radical polymerization. The polymer matrix consisted of carbon nanotubes (CNTs), styrene sulfonic sodium (SSNa), β-cyclodextrin (β-CD)-grafted acrylamide, and ferrocene (Fc)-grafted acrylamide, with the incorporation of SSNa serving as the ionic source. On applying an external voltage, the ions accumulate on one side of the matrix, leading to localized swelling and bending of the structure. Therefore, a controllable and reversible actuation can be achieved by changing the applied voltage. The tensile strength of the SIPC was improved by over 300%, from 12 to 49 kPa, due to the reinforcement effect of the CNTs and the supramolecular host–guest interactions between the β-CD and Fc moieties. The inclusion of CNTs not only improved the tensile properties but also enhanced the ion mobility, which lead to a faster electromechanical response. The presented electro-responsive composite hydrogel shows a high potential for the development of robotic devices and soft smart components for sensing and actuating applications.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Steinar Halldorsson ◽  
Kasim Sader ◽  
Jack Turner ◽  
Lesley J. Calder ◽  
Peter B. Rosenthal

AbstractThe lipid-enveloped influenza C virus contains a single surface glycoprotein, the haemagglutinin-esterase-fusion (HEF) protein, that mediates receptor binding, receptor destruction, and membrane fusion at the low pH of the endosome. Here we apply electron cryotomography and subtomogram averaging to describe the structural basis for hexagonal lattice formation by HEF on the viral surface. The conformation of the glycoprotein in situ is distinct from the structure of the isolated trimeric ectodomain, showing that a splaying of the membrane distal domains is required to mediate contacts that form the lattice. The splaying of these domains is also coupled to changes in the structure of the stem region which is involved in membrane fusion, thereby linking HEF’s membrane fusion conformation with its assembly on the virus surface. The glycoprotein lattice can form independent of other virion components but we show a major role for the matrix layer in particle formation.


1998 ◽  
Vol 142 (3) ◽  
pp. 613-623 ◽  
Author(s):  
Koji Okamoto ◽  
Philip S. Perlman ◽  
Ronald A. Butow

Green fluorescent protein (GFP) was used to tag proteins of the mitochondrial matrix, inner, and outer membranes to examine their sorting patterns relative to mtDNA in zygotes of synchronously mated yeast cells in ρ+ × ρ0 crosses. When transiently expressed in one of the haploid parents, each of the marker proteins distributes throughout the fused mitochondrial reticulum of the zygote before equilibration of mtDNA, although the membrane markers equilibrate slower than the matrix marker. A GFP-tagged form of Abf2p, a mtDNA binding protein required for faithful transmission of ρ+ mtDNA in vegetatively growing cells, colocalizes with mtDNA in situ. In zygotes of a ρ+ × ρ+ cross, in which there is little mixing of parental mtDNAs, Abf2p–GFP prelabeled in one parent rapidly equilibrates to most or all of the mtDNA, showing that the mtDNA compartment is accessible to exchange of proteins. In ρ+ × ρ0 crosses, mtDNA is preferentially transmitted to the medial diploid bud, whereas mitochondrial GFP marker proteins distribute throughout the zygote and the bud. In zygotes lacking Abf2p, mtDNA sorting is delayed and preferential sorting is reduced. These findings argue for the existence of a segregation apparatus that directs mtDNA to the emerging bud.


2009 ◽  
Vol 23 (06n07) ◽  
pp. 855-862 ◽  
Author(s):  
FEIYUE MA ◽  
ZHIYI LIU

The microstructural evolution in an Al - Cu - Mg - Ag alloy with trace Zr addition during homogenization treatment was characterized by Differential Scanning Calorimetry (DSC), Scanning Electron Microscopy (SEM) and Energy-dispersive X-ray Spectroscopy (EDS). It was shown that the low-melting-point phase segregating toward grain boundaries is Al 2 Cu , with a melting point of 523.52°C. A two-step homogenization process was employed to optimize the microstructure of the as-cast alloy, during which the alloy was first homogenized at a lower temperature, then at a higher temperature. After homogenized at 420°C for 6 h, Al 3 Zr particles were finely formed in the matrix. After that, when the alloy was homogenized at an elevated temperature for a longer time, i.e., 515°C for 24 h, most of the precipates at the grain boundaries were removed. Furthermore, the dispersive Al 3 Zr precipitates were retained, without coarsening greatly in the final homogenization step. A kinetics model is employed to predict the optimal homogenization time at a given temperature theoretically, and it confirms the result in present study, which is 420°C/6h+515°C/24h.


Transient creep following stress reductions has been analysed by the method described by McLean (1980) to determine the friction stress σ 0 as a function of temperature and directional solidification conditions for the γ-γ'-Cr 3 Cr 2 in-situ composite and for the γ-γ' matrix alloy. These values of σ 0 are identical to the flow stresses at creep strain rates and can be identified with the sums of the barriers to dislocation motion through the matrix by climb around γ'-particles and Orowan bowing between the carbide fibres. The friction stress and the kinetics of deformation of the composite are determined by the matrix behaviour, whereas its creep strength depends on the distribution of stress between fibre and matrix. When the steady-state creep behaviour of γ-γ'-Cr 3 C 2 is analysed by using the usual power law description in terms of the effective stress σ — σ 0 , rather than the applied stress σ, the stress exponent is ca 4 and the activation energy is similar to the activation energy of self-diffusion for nickel. The results provide strong evidence for the operation of recovery-creep in both the composite and matrix alloys.


2016 ◽  
Vol 25 (5-6) ◽  
pp. 165-169
Author(s):  
C. Rajaravi ◽  
P.R. Lakshminarayanan

AbstractThe paper describes a different condition of pouring temperature by sand and permanent mould to produce A356-6 wt% TiB2 metal matrix composites by in-situ method salt metal reaction route. The observation of SEM micrographs shows particle distribution of the TiB2 and it appears in hexagonal shape in Al matrix. The results of X-ray diffraction (XRD) analysis confirmed the formation of those TiB2 particulates and the results showed TiB2 particles are homogeneously dispersed throughout the matrix metal. Subsequent structure-property evaluation studies indicated sub-micron size reinforcement of in-situ formed TiB2 particles with improved physical and mechanical properties as compared to sand and permanent mould of Al-TiB2 composites. From, the permanent mould Al-TiB2 composite has an advantage of increase the properties over sand mould Al-TiB2 composite.


2012 ◽  
Vol 512-515 ◽  
pp. 671-675 ◽  
Author(s):  
Ai Guo Zhou ◽  
Liang Li ◽  
Tai Chao Su ◽  
Shang Sheng Li

Ti3SiC2, a ternary carbide, was proposed at this paper to use as the binder of polycrystalline diamonds to overcome the weaknesses of traditional metal binders and ceramic binders. Ti3SiC2was first reported to be in-situ synthesized under high pressure (4GPa) and at high temperature (1400°C) (HPHT) from the mixtures of Ti, Si and graphite powders or the mixture of Ti, SiC and graphite powders. Ti3SiC2-damond composites were also made at HPHT from the previous mixtures and diamond particles. TiCx, Ti5Si3Cxand TiSi2were main impurities and/or intermediate products of Ti3SiC2samples synthesized at HPHT. Ti3SiC2content increased as synthesized time increased from 10 min to 60 min. For as-synthesized composites, diamond particles were evenly distributed in matrix. The diamond particles are bonded well with the matrix by three types of interface.


Sign in / Sign up

Export Citation Format

Share Document