Surface contour error model of five-axis machining considering multifactor coupling effects

Author(s):  
Shuyi Ge ◽  
Liping Wang ◽  
Guang Yu

During five-axis flank milling procedure, the static deflection of workpiece and cutter creates surface errors that lead to defects in projects with strict requirements, especially in thin-walled parts industry. Focusing on the mentioned issues, the surface contour error is predicted in this paper considering the coupling between the deflection and cutting force. First, an efficient calculation method of the cutting force is presented in five-axis flank milling. This method accounts for the impact of cutter runout on cutter/workpiece engagement (CWE) and the instantaneous undeformed chip thickness (IUCT). Then, a cutter is modelled as a cantilever structure and thus an analytical solution for the deflection of the end mill can be obtained. Next, the flexible cutting force is distributed on a finite element (FE) model of workpiece, while the workpiece stiffness keeps varying with the material removal. Subsequently, a flexible iterative calculation method for achieving deflection prediction is established. Finally, the prediction model is proven by machining tests of an S-shaped specimen in which predicted values of the surface error match with the experimental results.

2021 ◽  
Author(s):  
J.Y. Feng ◽  
Z.C. Wei ◽  
M.J. Wang ◽  
X.Q. Wang ◽  
M.L. Guo

Abstract U-pass milling is a roughing method that combines the characteristics of flank milling with conventional trochoidal milling. The tool cuts in and out steadily, and the tool–workpiece wrap angle is maintained within a small range. This method can smooth the cutting force and reduce the peak cutting force while avoiding cutting heat accumulation, which can significantly improve the processing efficiency and reduce tool wear. In this study, a tool path model is established for U-pass milling, and the characteristic parameters of the path are defined. Through a comparative test of three-axis groove milling, it is demonstrated that the peak value and average value of the cutting force are reduced by 25% and 60%, respectively. An impeller runner is considered as the processing object, and the milling boundary parameters are pretreated. A tiling micro-arc mapping algorithm is proposed, which maps the three-dimensional boundary to the two-dimensional parameter domain plane with the arc length as the coordinate axis, and the dimensionally reduced tool contact point distribution form is obtained. The geometric domain tool position point and the interference-free tool axis vector are obtained by calculating the bidirectional proportional domain of the runner and the inverse mapping of any vector in the parameter domain. Finally, the calculation results are nested into the automatically programmed tool (APT) encoding form, and the feasibility of the five-axis U-pass milling tool path planning method is verified through a numerical example.


Author(s):  
W. Ferry ◽  
Y. Altintas

Jet engine impeller blades are flank-milled with tapered, helical, ball-end mills on five-axis machining centers. The impellers are made from difficult-to-cut titanium or nickel alloys, and the blades must be machined within tight tolerances. As a consequence, deflections of the tool and flexible workpiece can jeopardize the precision of the impellers during milling. This work is the first of a two part paper on cutting force prediction and feed optimization for the five-axis flank milling of an impeller. In Part I, a mathematical model for predicting cutting forces is presented for five-axis machining with tapered, helical, ball-end mills with variable pitch and serrated flutes. The cutter is divided axially into a number of differential elements, each with its own feed coordinate system due to five-axis motion. At each element, the total velocity due to translation and rotation is split into horizontal and vertical feed components, which are used to calculate total chip thickness along the cutting edge. The cutting forces for each element are calculated by transforming friction angle, shear stress and shear angle from an orthogonal cutting database to the oblique cutting plane. The distributed cutting load is digitally summed to obtain the total forces acting on the cutter and blade. The model can be used for general five-axis flank milling processes, and supports a variety of cutting tools. Predicted cutting force measurements are shown to be in reasonable agreement with those collected during a roughing operation on a prototype integrally bladed rotor (IBR).


2021 ◽  
Vol 65 (4) ◽  
pp. 293-301
Author(s):  
Amor Benmeddour

In this work, a numerical and an experimental study aimed to gain a better understanding of the impact of tool geometry such as (rake angle and cutting edge radius) on the temperature distribution and residual stresses in machining surface of AISI 316L stainless steel have been presented. To evaluate the experimental results, various experimental equipment was used, such as a conventional lathe to carry out the machining operations, the cutting force was measured using a Kistler dynamometer and X-ray diffraction technique was employed for determination of the residual stresses distribution on the machined surfaces. In addition, A thermo-mechanically coupled finite element (FE) analysis for cutting process is developed through ABAQUS code to predict the temperature distribution and residual stresses using an Arbitrary Lagrangian-Eulerian (ALE) approach. An inverse identification method has been used to determine the adequate Johnson-Cook (JC) material model parameters to obtain a good correlation between the cutting force measurements and numerical one. The FE model was then validated by comparison of the numerical results of residual stresses with experimental measurements for different tool geometries, which revealed a reasonable agreement.


2017 ◽  
Vol 4 (3) ◽  
pp. 203-217 ◽  
Author(s):  
Ke Xu ◽  
Jiarui Wang ◽  
Chih-Hsing Chu ◽  
Kai Tang

Abstract Five-axis flank milling has been commonly used in the manufacturing of complex workpieces because of its greater productivity than that of three-axis or five-axis end milling. The advantage of this milling operation largely depends on effective cutter location planning. The finished surface sometimes suffers from large geometrical errors induced by improper tool positioning, due to the non-developability of most ruled surfaces in industrial applications. In addition, a slender flank-milling cutter may be deflected when subjected to large cutting forces during the machining process, further degrading the surface quality or even breaking the cutter. This paper proposes a novel tool path planning scheme to address those problems. A simple but effective algorithm is developed to adaptively allocate a series of cutter locations over the design surface with each one being confined within an angular rotation range. The allocation result satisfies a given constraint of geometrical errors on the finished surface, which consists of the tool positioning errors at each cutter location and the sweeping errors between consecutive ones. In addition, a feed rate scheduling algorithm is proposed to maximize the machining efficiency subject to the cutting force constraint and the kinematical constraints of a specific machine configuration. Simulation and experimental tests are conducted to validate the effectiveness of the proposed algorithms. Both the machining efficiency and finish surface quality are greatly improved compared with conventional cutter locations. Highlights Tool position is bounded with respect to the geometrical machining error. Cutting force and kinematics during five-axis flank milling process are analyzed. An incremental adaptive flank milling tool path generation algorithm is proposed. Feed rate is smoothly assigned respecting cutting force and kinematic constraints.


Author(s):  
Hao Si ◽  
Liping Wang

Five-axis flank milling is the most commonly used processing method in the aviation industry for the machining of thin-walled parts with complex ruled surfaces. During machining, the tool/workpiece deformations caused by the cutting force often lead to surface errors on the machined components that severely affect the accuracy of the machining results. This article presents an iterative compensation strategy to reduce the tool/workpiece deformation-induced surface error during the five-axis flank milling of thin-walled workpieces by modifying the tool tip position and tool axis orientation. This approach can be implemented in four steps. First, a highly integrated cutter-workpiece engagement extraction method is developed for the construction of a flexible cutting force model that can follow changes in the process geometry. Second, the tool/workpiece deformations are predicted by the cantilever beam model and finite element model, respectively. Third, an off-line error compensation scheme is performed at each cutting location of the tool path to obtain the modified tool position. Fourth, the machined surface of the workpiece model is reconstructed, and the compensated machining code, which can be used directly for actual machining, is generated. A case study is presented at the end of this article, and the effectiveness of the present compensation strategy is verified by machining experiments.


Micromachines ◽  
2021 ◽  
Vol 12 (8) ◽  
pp. 953
Author(s):  
Jiakang Zhou ◽  
Jieqiong Lin ◽  
Mingming Lu ◽  
Xian Jing ◽  
Yubo Jin ◽  
...  

To analyze the effect of particle shape on deformational behavior in the cutting simulation process for metal matrix composites (MMCs), two 2D mesoscopic-based finite element (FE) models reinforced with randomly distributed circular and irregular polygonal particles were developed. Different material properties (metal matrix phase, particle reinforced phase) and the properties of the particle–matrix interface were comprehensively considered in the proposed FE model. Systematic cutting experiments were conducted to compare the differences between two modeling approaches with respect to particle fracture, chip formation, cutting force and surface integrity. The results show that the irregular polygonal particle model is closer to the microstructure of MMCs, and is better able to reflect the deformation behavior of particles. The simulation model with irregular polygonal particles is even able to capture more details of the impact caused by particles, reflecting variations in the cutting force in the actual cutting process. The initiation and propagation of microcracks is mainly determined on the basis of particle geometry and further affects chip formation. Both models are able to correctly reflect surface defects, but the irregular polygonal particle model provides a more comprehensive prediction for the subsurface damage of MMCs.


Sign in / Sign up

Export Citation Format

Share Document