binder saturation
Recently Published Documents


TOTAL DOCUMENTS

18
(FIVE YEARS 10)

H-INDEX

5
(FIVE YEARS 2)

Author(s):  
Kevin J. Hodder ◽  
◽  
Kaylee Craplewe ◽  
Sergey Ishutov ◽  
Rick Chalaturnyk ◽  
...  

Binder jet additive manufacturing (BJ-AM) is a rapidly evolving 3D printing technique where the access to an array of powder materials is expanding. The use of silica sand has grown in popularity within the BJ-AM sector and has been shown to have a high potential of replicating physiochemical properties of natural materials for geoengineering applications. Consistent porosity is critical for 3D-printed samples used in rock testing since homogeneity between samples would provide unlimited capabilities in a laboratory setting. Binder saturation is one of the key user-set parameters that controls the ratio between the dimensional tolerance and porosity. Nonetheless, the binder saturation is an internal calculation by the printer’s software that relies on several assumptions, where the most important physical aspect is droplet spacing. This study establishes relationships between the droplet spacing, dimensional tolerance, binder saturation, and porosity. By holding the droplet volume constant and changing its spacing, better control of saturation was observed. Higher saturation reduced porosity and increased circularity of cylindrical samples, but overall dimensional tolerance of fine features was reduced. This study provides improvements of 3D-printed rock for the representation of porosity and geomechanical properties observed in natural sandstones.


Materials ◽  
2021 ◽  
Vol 14 (16) ◽  
pp. 4419
Author(s):  
Vadim Sufiiarov ◽  
Artem Kantyukov ◽  
Anatoliy Popovich ◽  
Anton Sotov

This article presents the results of manufacturing samples from barium titanate (BaTiO3) lead-free piezoceramics by using the binder jetting additive manufacturing process. An investigation of the manufacturing process steps for two initial powders with different particle size distributions was carried. The influence of the sintering and the particle size distribution of the starting materials on grain size and functional properties was evaluated. Samples from fine unimodal powder compared to coarse multimodal one have 3–4% higher relative density values, as well as a piezoelectric coefficient of 1.55 times higher values (d33 = 183 pC/N and 118 pC/N correspondingly). The influence of binder saturation on sintering modes was demonstrated. Binder jetting with 100% saturation for both powders enables printing samples without delamination and cracking. Sintering at 1400 °C with a dwell time of 6 h forms the highest density samples. The microstructure of sintered samples was characterized with scanning electron microscopy. The possibility of manufacturing parts from functional ceramics using additive manufacturing was demonstrated.


2021 ◽  
pp. 102128
Author(s):  
Amir Mostafaei ◽  
Pierangeli Rodriguez De Vecchis ◽  
A. Kimes Katerina ◽  
Drew Elhassid ◽  
Markus Chmielus

Author(s):  
Issa Rishmawi ◽  
Mihaela Vlasea

Abstract This study focuses on developing and demonstrating a straightforward workflow for identifying pathways to increase green part density in binder jetting additive manufacturing using statistically-driven process maps. The workflow was applied to investigate the effects of process parameters toward improving green part density, with a direct application in manufacturing of Fe-Si components. Specifically, a half-factorial experimental design was used to study the effects of four key parameters - layer thickness, powder spreading speed, roller rotational speed, and binder saturation - on Fe-Si spherical powder with D50 of 32.40 µm. The study discusses bulk density as well as localized density variation in the printed parts, which is attributed to both parameter selection and inherent process variability. A regression analysis was employed to reveal the significance of main effects and second order interactions. The regression model (R2 = 0.915) was used to derive an expression for green density as a function of the parameters, and had a prediction error of 0.96%. Based on the regression model, an optimized set of parameters was obtained that would maximize green density up to 57.96% for the machine and material system.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Yashwant Kumar Modi ◽  
Kiran Kumar Sahu

Purpose This study aims to optimize the process parameters of ZPrinter® 450 for measured porosity (MP) and compressive strength (CS) of calcium sulfate-based porous bone scaffold using Taguchi approach. Design/methodology/approach Initially, a porous scaffold with smallest pore size that can be de-powdered completely is identified through a pilot study. Five printing parameters, namely, layer thickness (LT), build orientation (BO), build position (BP), delay time (DT) and binder saturation (BS), each at three levels have been optimized for MP and CS of the fabricated scaffolds using L27 orthogonal array (OA), signal-to-noise ratio and analysis of variance (ANOVA). Findings The scaffolds with 600 µm pores could be de-powdered completely. Optimum levels of parameters are LT2, BO1, BP2, DT1 and BS1 for MP and LT1, BO1, BP2, DT1 and BS2 for CS. The ANOVA reveals that the BS (49.12%) is the most and BP (8.34%) is the least significant parameter for MP. LT (50.84%) is the most, BO (33.79%) is second most and DT (2.59%) is the least significant parameter for CS. Taguchi confirmation test and linear regression models indicate a good agreement between predicted and experimental values of MP and CS. The experimental values of MP and CS at the optimum levels of parameters are found 38.12% and 1.29 MPa, respectively. Originality/value The paper presents effect of process parameters of ZPrinter® 450 on MP and CS of calcium sulfate-based porous scaffolds. Results may be used as guideline for powder bed binder jetting three-dimensional printing of ceramic scaffolds.


Author(s):  
Ruprecht John ◽  
Kuldeep Agarwal ◽  
Shaheen Ahmed

Traditional metals such as stainless steel, titanium and cobalt chrome are used in biomedical applications (implants, scaffolds etc.) but suffer from issues such as osseointegration and compatibility with existing bone. One way to improve traditional biomaterials is to incorporate ceramics with these metals so that their mechanical properties can be similar to cortical bones. Tricalcium phosphate is such a ceramic with properties so that it can be used in human body. This research explores the use of binder jetting based additive manufacturing process to create a novel biocomposite made of cobalt chrome and tricalcium phosphate. Experiments were conducted and processing parameters were varied to study their effect on the printing of this biocomposite. Layer thickness, binder saturation and drying time affected the dimensional tolerance and the density of the green samples. This effect is important to understand so that the material can be optimized for use in specific applications.


2020 ◽  
Vol 205 ◽  
pp. 04014
Author(s):  
Kevin Hodder ◽  
Sergey Ishutov ◽  
Angel Sanchez ◽  
Gonzalo Zambrano ◽  
Rick Chalaturnyk

Natural rocks can be heterogeneous due to complex diagenetic processes that affect mineralogy and pore architecture. Correlation of geomechanical and transport properties of rocks in three dimensions can lead to large variances in data when tested experimentally. 3D-printing of rock analogues in sand is a promising alternative for experimental testing that can be used to calibrate variables during geotechnical testing. While 3D-printed sand is a homogeneous material, the parameters for creating grain packing and pore infill can be tuned to mimic specific geomechanical and transport properties. Initially, 3D-printed specimens have a low density due to a loose distribution of grains. Herein, we present our efforts at increasing the density through incorporating a roller in the printing process to compact individual layers. We also propose introduction of a more heterogeneous sand mixture that encompasses a wide range of grain-size distributions. Lastly, a discussion between binder saturation (that infills the pore space) of 3D-printed specimens and the axial strength, dimensional control, and porosity is described within. 3D printing of rock analogues is critical in pursuing rigorous destructive tests required for geotechnical and geological engineering because it can provide repeatable, controlled data on rock properties.


2019 ◽  
Vol 3 (3) ◽  
pp. 82 ◽  
Author(s):  
Saereh Mirzababaei ◽  
Somayeh Pasebani

Binder jet additive manufacturing enables the production of complex components for numerous applications. Binder jetting is the only powder bed additive manufacturing process that is not fusion-based, thus manufactured parts have no residual stresses as opposed to laser-based additive manufacturing processes. Binder jet technology can be adopted for the production of various small and large metallic parts for specific applications, including in the biomedical and energy sectors, at a lower cost and shorter lead time. One of the most well-known types of stainless steels for various industries is 316L, which has been extensively manufactured using binder jet technology. Binder jet manufactured 316L parts have obtained near full density and, in some cases, similar mechanical properties compared to conventionally manufactured parts. This article introduces methods, principles, and applications of binder jetting of SS 316L. Details of binder jetting processes, including powder characteristics (shape and size), binder properties (binder chemistry and droplet formation mechanism), printing process parameters (such as layer thickness, binder saturation, drying time), and post-processing sintering mechanism and densification processes, are carefully reviewed. Furthermore, critical factors in the selection of feedstock, printing parameters, sintering temperature, time, atmosphere, and heating rate of 316L binder jet manufactured parts are highlighted and summarized. Finally, the above-mentioned processing parameters are correlated with final density and mechanical properties of 316L components to establish a guideline on feedstock selection and process parameters optimization to achieve desired density, structure and properties for various applications.


Sign in / Sign up

Export Citation Format

Share Document