coherent behavior
Recently Published Documents


TOTAL DOCUMENTS

37
(FIVE YEARS 6)

H-INDEX

10
(FIVE YEARS 1)

Algorithms ◽  
2021 ◽  
Vol 14 (2) ◽  
pp. 66
Author(s):  
Camille Champion ◽  
Anne-Claire Brunet ◽  
Rémy Burcelin ◽  
Jean-Michel Loubes ◽  
Laurent Risser

In this paper, we present a new framework dedicated to the robust detection of representative variables in high dimensional spaces with a potentially limited number of observations. Representative variables are selected by using an original regularization strategy: they are the center of specific variable clusters, denoted CORE-clusters, which respect fully interpretable constraints. Each CORE-cluster indeed contains more than a predefined amount of variables and each pair of its variables has a coherent behavior in the observed data. The key advantage of our regularization strategy is therefore that it only requires to tune two intuitive parameters: the minimal dimension of the CORE-clusters and the minimum level of similarity which gathers their variables. Interpreting the role played by a selected representative variable is additionally obvious as it has a similar observed behaviour as a controlled number of other variables. After introducing and justifying this variable selection formalism, we propose two algorithmic strategies to detect the CORE-clusters, one of them scaling particularly well to high-dimensional data. Results obtained on synthetic as well as real data are finally presented.


2020 ◽  
Vol 5 (1) ◽  
Author(s):  
Zhigang Song ◽  
Lin-Wang Wang

Abstract Floquet states are a topic of intense contemporary interest, which is often induced by coherent external oscillating perturbation (e.g., laser, or microwave) which breaks the continuous time translational symmetry of the systems. Usually, electron–phonon coupling modifies the electronic structure of a crystal as a non-coherent perturbation and seems difficult to form Floquet states. Surprisingly, we found that the thermal equilibrium electron–phonon coupling in M(MoS)3 and M(MoSe)3 (where M is a metallic element) exhibits a coherent behavior, and the electronic structure can be described by the Floquet theorem. Such a coherent Floquet state is caused by a selective giant electron–phonon coupling, with thermodynamic phonon oscillation serving as a driving force on the electronic part of the system. The quasi-1D Dirac cone at the Fermi energy has its band gap open and close regularly. Similarly, the electric current will oscillate even under a constant voltage.


Science ◽  
2019 ◽  
Vol 366 (6469) ◽  
pp. 1107-1110 ◽  
Author(s):  
Federico Lombardi ◽  
Alessandro Lodi ◽  
Ji Ma ◽  
Junzhi Liu ◽  
Michael Slota ◽  
...  

Robustly coherent spin centers that can be integrated into devices are a key ingredient of quantum technologies. Vacancies in semiconductors are excellent candidates, and theory predicts that defects in conjugated carbon materials should also display long coherence times. However, the quantum performance of carbon nanostructures has remained stunted by an inability to alter the sp2-carbon lattice with atomic precision. Here, we demonstrate that topological tailoring leads to superior quantum performance in molecular graphene nanostructures. We unravel the decoherence mechanisms, quantify nuclear and environmental effects, and observe spin-coherence times that outclass most nanomaterials. These results validate long-standing assumptions on the coherent behavior of topological defects in graphene and open up the possibility of introducing controlled quantum-coherent centers in the upcoming generation of carbon-based optoelectronic, electronic, and bioactive systems.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
V. Vitale ◽  
G. De Filippis ◽  
A. de Candia ◽  
A. Tagliacozzo ◽  
V. Cataudella ◽  
...  

Abstract Adiabatic quantum computation (AQC) is a promising counterpart of universal quantum computation, based on the key concept of quantum annealing (QA). QA is claimed to be at the basis of commercial quantum computers and benefits from the fact that the detrimental role of decoherence and dephasing seems to have poor impact on the annealing towards the ground state. While many papers show interesting optimization results with a sizable number of qubits, a clear evidence of a full quantum coherent behavior during the whole annealing procedure is still lacking. In this paper we show that quantum non-demolition (weak) measurements of Leggett Garg inequalities can be used to efficiently assess the quantumness of the QA procedure. Numerical simulations based on a weak coupling Lindblad approach are compared with classical Langevin simulations to support our statements.


2019 ◽  
Vol 14 (4) ◽  
pp. 1185-1201
Author(s):  
Florian Brandl ◽  
Felix Brandt

Developing normative foundations for optimal play in two‐player zero‐sum games has turned out to be surprisingly difficult, despite the powerful strategic implications of the minimax theorem. We characterize maximin strategies by postulating coherent behavior in varying games. The first axiom, called consequentialism, states that how probability is distributed among completely indistinguishable actions is irrelevant. The second axiom, consistency, demands that strategies that are optimal in two different games should still be optimal when there is uncertainty regarding which of the two games will actually be played. Finally, we impose a very mild rationality assumption, which merely requires that strictly dominated actions will not be played. Our characterization shows that a rational and consistent consequentialist who ascribes the same properties to his opponent has to play maximin strategies. This result can be extended to characterize Nash equilibrium in bimatrix games whenever the set of equilibria is interchangeable.


PAMM ◽  
2017 ◽  
Vol 17 (1) ◽  
pp. 11-14
Author(s):  
Kathrin Padberg-Gehle ◽  
Christiane Schneide

Sign in / Sign up

Export Citation Format

Share Document