regularization strategy
Recently Published Documents


TOTAL DOCUMENTS

52
(FIVE YEARS 25)

H-INDEX

7
(FIVE YEARS 2)

Data ◽  
2022 ◽  
Vol 7 (1) ◽  
pp. 10
Author(s):  
Davide Buffelli ◽  
Fabio Vandin

Graph Neural Networks (GNNs) rely on the graph structure to define an aggregation strategy where each node updates its representation by combining information from its neighbours. A known limitation of GNNs is that, as the number of layers increases, information gets smoothed and squashed and node embeddings become indistinguishable, negatively affecting performance. Therefore, practical GNN models employ few layers and only leverage the graph structure in terms of limited, small neighbourhoods around each node. Inevitably, practical GNNs do not capture information depending on the global structure of the graph. While there have been several works studying the limitations and expressivity of GNNs, the question of whether practical applications on graph structured data require global structural knowledge or not remains unanswered. In this work, we empirically address this question by giving access to global information to several GNN models, and observing the impact it has on downstream performance. Our results show that global information can in fact provide significant benefits for common graph-related tasks. We further identify a novel regularization strategy that leads to an average accuracy improvement of more than 5% on all considered tasks.


2021 ◽  
Author(s):  
Bjørn Christian Skov Jensen ◽  
Kim Knudsen

Abstract The goal in Acousto-Electric Tomography (AET) is to reconstruct an image of the unknown electric conductivity inside an object from boundary measurements of electrostatic currents and voltages collected while the object is penetrated by propagating ultrasound waves. This problem is a coupled-physics inverse problem. Accurate knowledge of the propagating ultrasound wave is usually assumed and required, but in practice tracking the propagating wave is hard due to inexact knowledge of the interior acoustic properties of the object. In this work, we model uncertainty in the sound speed of the acoustic wave, and formulate a suitable reconstruction method for the interior power density and conductivity. We also establish theoretical error bounds, and show that the suggested approach can be understood as a regularization strategy for the inverse problem. Finally, we numerically simulate the sound speed variations from a numerical breast tissue model, and computationally explore the effect of using an inaccurate sound speed on the error in reconstructions. Our results show that with reasonable uncertainty in the sound speed reliable reconstruction is still possible.


Sensors ◽  
2021 ◽  
Vol 21 (16) ◽  
pp. 5586
Author(s):  
Yi-Tun Lin ◽  
Graham D. Finlayson

Spectral reconstruction (SR) algorithms attempt to recover hyperspectral information from RGB camera responses. Recently, the most common metric for evaluating the performance of SR algorithms is the Mean Relative Absolute Error (MRAE)—an ℓ1 relative error (also known as percentage error). Unsurprisingly, the leading algorithms based on Deep Neural Networks (DNN) are trained and tested using the MRAE metric. In contrast, the much simpler regression-based methods (which actually can work tolerably well) are trained to optimize a generic Root Mean Square Error (RMSE) and then tested in MRAE. Another issue with the regression methods is—because in SR the linear systems are large and ill-posed—that they are necessarily solved using regularization. However, hitherto the regularization has been applied at a spectrum level, whereas in MRAE the errors are measured per wavelength (i.e., per spectral channel) and then averaged. The two aims of this paper are, first, to reformulate the simple regressions so that they minimize a relative error metric in training—we formulate both ℓ2 and ℓ1 relative error variants where the latter is MRAE—and, second, we adopt a per-channel regularization strategy. Together, our modifications to how the regressions are formulated and solved leads to up to a 14% increment in mean performance and up to 17% in worst-case performance (measured with MRAE). Importantly, our best result narrows the gap between the regression approaches and the leading DNN model to around 8% in mean accuracy.


Author(s):  
Saurabh Varshneya ◽  
Antoine Ledent ◽  
Robert A. Vandermeulen ◽  
Yunwen Lei ◽  
Matthias Enders ◽  
...  

We propose a novel training methodology---Concept Group Learning (CGL)---that encourages training of interpretable CNN filters by partitioning filters in each layer into \emph{concept groups}, each of which is trained to learn a single visual concept. We achieve this through a novel regularization strategy that forces filters in the same group to be active in similar image regions for a given layer. We additionally use a regularizer to encourage a sparse weighting of the concept groups in each layer so that a few concept groups can have greater importance than others. We quantitatively evaluate CGL's model interpretability using standard interpretability evaluation techniques and find that our method increases interpretability scores in most cases. Qualitatively we compare the image regions which are most active under filters learned using CGL versus filters learned without CGL and find that CGL activation regions more strongly concentrate around semantically relevant features.


2021 ◽  
Vol 11 (14) ◽  
pp. 6624
Author(s):  
Jeiyoon Park ◽  
Chanhee Lee ◽  
Chanjun Park ◽  
Kuekyeng Kim ◽  
Heuiseok Lim

Despite its significant effectiveness in adversarial training approaches to multidomain task-oriented dialogue systems, adversarial inverse reinforcement learning of the dialogue policy frequently fails to balance the performance of the reward estimator and policy generator. During the optimization process, the reward estimator frequently overwhelms the policy generator, resulting in excessively uninformative gradients. We propose the variational reward estimator bottleneck (VRB), which is a novel and effective regularization strategy that aims to constrain unproductive information flows between inputs and the reward estimator. The VRB focuses on capturing discriminative features by exploiting information bottleneck on mutual information. Quantitative analysis on a multidomain task-oriented dialogue dataset demonstrates that the VRB significantly outperforms previous studies.


Algorithms ◽  
2021 ◽  
Vol 14 (2) ◽  
pp. 66
Author(s):  
Camille Champion ◽  
Anne-Claire Brunet ◽  
Rémy Burcelin ◽  
Jean-Michel Loubes ◽  
Laurent Risser

In this paper, we present a new framework dedicated to the robust detection of representative variables in high dimensional spaces with a potentially limited number of observations. Representative variables are selected by using an original regularization strategy: they are the center of specific variable clusters, denoted CORE-clusters, which respect fully interpretable constraints. Each CORE-cluster indeed contains more than a predefined amount of variables and each pair of its variables has a coherent behavior in the observed data. The key advantage of our regularization strategy is therefore that it only requires to tune two intuitive parameters: the minimal dimension of the CORE-clusters and the minimum level of similarity which gathers their variables. Interpreting the role played by a selected representative variable is additionally obvious as it has a similar observed behaviour as a controlled number of other variables. After introducing and justifying this variable selection formalism, we propose two algorithmic strategies to detect the CORE-clusters, one of them scaling particularly well to high-dimensional data. Results obtained on synthetic as well as real data are finally presented.


Sign in / Sign up

Export Citation Format

Share Document