scholarly journals Quantum units from the topological engineering of molecular graphenoids

Science ◽  
2019 ◽  
Vol 366 (6469) ◽  
pp. 1107-1110 ◽  
Author(s):  
Federico Lombardi ◽  
Alessandro Lodi ◽  
Ji Ma ◽  
Junzhi Liu ◽  
Michael Slota ◽  
...  

Robustly coherent spin centers that can be integrated into devices are a key ingredient of quantum technologies. Vacancies in semiconductors are excellent candidates, and theory predicts that defects in conjugated carbon materials should also display long coherence times. However, the quantum performance of carbon nanostructures has remained stunted by an inability to alter the sp2-carbon lattice with atomic precision. Here, we demonstrate that topological tailoring leads to superior quantum performance in molecular graphene nanostructures. We unravel the decoherence mechanisms, quantify nuclear and environmental effects, and observe spin-coherence times that outclass most nanomaterials. These results validate long-standing assumptions on the coherent behavior of topological defects in graphene and open up the possibility of introducing controlled quantum-coherent centers in the upcoming generation of carbon-based optoelectronic, electronic, and bioactive systems.


Actuators ◽  
2019 ◽  
Vol 8 (2) ◽  
pp. 46 ◽  
Author(s):  
Mauro Giorcelli ◽  
Mattia Bartoli

In recent decades, micro and nanoscale technologies have become cutting-edge frontiers in material science and device developments. This worldwide trend has induced further improvements in actuator production with enhanced performance. A main role has been played by nanostructured carbon-based materials, i.e., carbon nanotubes and graphene, due to their intrinsic properties and easy functionalization. Moreover, the nanoscale decoration of these materials has led to the design of doped and decorated carbon-based devices effectively used as actuators incorporating metals and metal-based structures. This review provides an overview and discussion of the overall process for producing AC actuators using nanostructured, doped, and decorated carbon materials. It highlights the differences and common aspects that make carbon materials one of the most promising resources in the field of actuators.



Nanoscale ◽  
2014 ◽  
Vol 6 (12) ◽  
pp. 6953-6958 ◽  
Author(s):  
Y. J. Dappe ◽  
C. González ◽  
J. C. Cuevas

We present anab initiostudy of the use of carbon-based tips as electrodes in single-molecule junctions. We show that carbon tips can be combined with other carbon nanostructures to form all-carbon molecular junctions with molecules like benzene or C60. Results show that the use of carbon tips can lead to conductive molecular junctions and open new perspectives in all-carbon molecular electronics.



2021 ◽  
Author(s):  
Züleyha Kudaş ◽  
Emir Çepni ◽  
Emre Gür ◽  
Duygu Ekinci

Here, new carbon-based nanostructures were prepared by the one-step electrochemical method using hexagonal and pentagonal polychlorinated organic rings as carbon source. The electrochemical growth of carbon nanostructures on substrates was...



2011 ◽  
Vol 14 (1) ◽  
pp. 41
Author(s):  
Z.A. Mansurov ◽  
A.R. Kerimkulova ◽  
S.A. Ibragimova ◽  
E.Y. Gukenheimer

The article presents the results of physico-chemical studies on the development of nanostructured carbon materials from domestic raw materials. Were obtained and tested micro-mesoporous carbon sorbents for molecular-sieve chromatography of markers and investigated the applicability of carbon sorbents for the separation of protein-lipid complex, and plant bio-stimulator. Carbon sorbents have well-developed porous structure but their disadvantage is the weak mechanical<br />strength. Recently it was shown that some carbon nanostructures have enormous strength. Thus arose the need to give the nano structured elements to carbon sorbent. Creating carbon sorbents containing nanocarbon structure was the aim of our study, as these by sorbents will be very useful for large-scale purification of biomolecules.



2021 ◽  
Author(s):  
Qiaoyu feng ◽  
Xueye Chen

<p>As a negative electrode material for lithium ion batteries (LIBs), carbon has a higher cycle life and higher safety. However, it has poor electrical conductivity, low charging and discharging platform, and poor stability of layered structure. Some carbon materials are complicated to make such as synthetic graphene, and the shape is difficult to control. Metal materials have good electrical conductivity, but due to the rapid volume expansion of lithium ions during the cycle of insertion and extraction, the electrodes are extremely quickly crushed and accompanied by extremely rapid capacity decay. Scholars have combined the advantages of carbon and metal materials to create a new type of carbon-based composite material. This article outlines the use of carbon based composite materials as lithium-ion electrodes to improve battery performance.</p>



2020 ◽  
Vol 187 (8) ◽  
Author(s):  
Eva-Maria Kirchner ◽  
Thomas Hirsch

Abstract This review (162 references) focuses on two-dimensional carbon materials, which include graphene as well as its allotropes varying in size, number of layers, and defects, for their application in electrochemical sensors. Many preparation methods are known to yield two-dimensional carbon materials which are often simply addressed as graphene, but which show huge variations in their physical and chemical properties and therefore on their sensing performance. The first section briefly reviews the most promising as well as the latest achievements in graphene synthesis based on growth and delamination techniques, such as chemical vapor deposition, liquid phase exfoliation via sonication or mechanical forces, as well as oxidative procedures ranging from chemical to electrochemical exfoliation. Two-dimensional carbon materials are highly attractive to be integrated in a wide field of sensing applications. Here, graphene is examined as recognition layer in electrochemical sensors like field-effect transistors, chemiresistors, impedance-based devices as well as voltammetric and amperometric sensors. The sensor performance is evaluated from the material’s perspective of view and revealed the impact of structure and defects of the 2D carbon materials in different transducing technologies. It is concluded that the performance of 2D carbon-based sensors is strongly related to the preparation method in combination with the electrical transduction technique. Future perspectives address challenges to transfer 2D carbon-based sensors from the lab to the market.



2021 ◽  
Author(s):  
Qiaoyu feng ◽  
Xueye Chen

<p>As a negative electrode material for lithium ion batteries (LIBs), carbon has a higher cycle life and higher safety. However, it has poor electrical conductivity, low charging and discharging platform, and poor stability of layered structure. Some carbon materials are complicated to make such as synthetic graphene, and the shape is difficult to control. Metal materials have good electrical conductivity, but due to the rapid volume expansion of lithium ions during the cycle of insertion and extraction, the electrodes are extremely quickly crushed and accompanied by extremely rapid capacity decay. Scholars have combined the advantages of carbon and metal materials to create a new type of carbon-based composite material. This article outlines the use of carbon based composite materials as lithium-ion electrodes to improve battery performance.</p>



2021 ◽  
Vol 10 (4) ◽  
pp. 08-12
Author(s):  
C. Thevamirtha ◽  
Sherin Monichan ◽  
P. Mosae Selvakumar

Plant-based carbon materials are a high-demand source nowadays, as they are low-cost, eco-friendly, easily available, and sustainable.  Borassus flabellifer (Palmyra palm) is a gift of nature that gives numerous benefits, as all parts of the tree can be used for multiple purposes. Palmyraculture is the practice of cultivating Palmyra palms and utilizing them to live a self-reliant life in working towards sustainable development. Due to the advancement of technology, Borassus flabellifer is used to synthesize carbon materials, including hard carbon, carbon nanodots, charcoal, and activated carbon.  These carbon materials can be used in electrochemistry as anode materials, biosensing, bioimaging, catalysts, and water purification. This review mainly focuses on the carbon materials derived from the Borassus flabellifer, their applications in various fields, and further aspects that have to be considered.



2020 ◽  
Vol 1 (8) ◽  
pp. 2631-2645 ◽  
Author(s):  
Jin-Bo Cheng ◽  
Hai-Gang Shi ◽  
Min Cao ◽  
Ting Wang ◽  
Hai-Bo Zhao ◽  
...  

We summarize the recent progress in porous carbon-based MA materials encompassing composition and microstructure design. Representative fabrication methods, structure characterization, and properties of materials are highlighted in detail.



Sign in / Sign up

Export Citation Format

Share Document