anticancer immunity
Recently Published Documents


TOTAL DOCUMENTS

104
(FIVE YEARS 60)

H-INDEX

19
(FIVE YEARS 10)

Author(s):  
Yash Agarwal ◽  
Lauren E. Milling ◽  
Jason Y. H. Chang ◽  
Luciano Santollani ◽  
Allison Sheen ◽  
...  
Keyword(s):  

Biomedicines ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 66
Author(s):  
Natasha Ustyanovska Avtenyuk ◽  
Ghizlane Choukrani ◽  
Emanuele Ammatuna ◽  
Toshiro Niki ◽  
Ewa Cendrowicz Król ◽  
...  

In earlier studies, galectin-9 (Gal-9) was identified as a multifaceted player in both adaptive and innate immunity. Further, Gal-9 had direct cytotoxic and tumor-selective activity towards cancer cell lines of various origins. In the current study, we identified that treatment with Gal-9 triggered pronounced membrane alterations in cancer cells. Specifically, phosphatidyl serine (PS) was rapidly externalized, and the anti-phagocytic regulator, CD47, was downregulated within minutes. In line with this, treatment of mixed neutrophil/tumor cell cultures with Gal-9 triggered trogocytosis and augmented antibody-dependent cellular phagocytosis of cancer cells. Interestingly, this pro-trogocytic effect was also due to the Gal-9-mediated activation of neutrophils with upregulation of adhesion markers and mobilization of gelatinase, secretory, and specific granules. These activation events were accompanied by a decrease in cancer cell adhesion in mixed cultures of leukocytes and cancer cells. Further, prominent cytotoxicity was detected when leukocytes were mixed with pre-adhered cancer cells, which was abrogated when neutrophils were depleted. Taken together, Gal-9 treatment potently activated neutrophil-mediated anticancer immunity, resulting in the elimination of epithelial cancer cells.


Author(s):  
Jie Wang ◽  
Ning Liu ◽  
Hongfei Jiang ◽  
Qian Li ◽  
Dongming Xing

Reactive oxygen species (ROS) are critical mediators in many physiological processes including innate and adaptive immunity, making the modulation of ROS level a powerful strategy to augment anticancer immunity. However, current evidences suggest the necessity of a deeper understanding of their multiple roles, which may vary with their concentration, location and the immune microenvironment they are in. Here, we have reviewed the reported effects of ROS on macrophage polarization, immune checkpoint blocking (ICB) therapy, T cell activation and expansion, as well as the induction of immunogenic cell death. A majority of reports are indicating detrimental effects of ROS, but it is unadvisable to simply scavenge them because of their pleiotropic effects in most occasions (except in T cell activation and expansion where ROS are generally undesirable). Therefore, clinical success will need a clearer illustration of their multi-faced functions, as well as more advanced technologies to tune ROS level with high spatiotemporal control and species-specificity. With such progresses, the efficacy of current immunotherapies will be greatly improved by combining with ROS-targeted therapies.


Biomedicines ◽  
2021 ◽  
Vol 9 (9) ◽  
pp. 1225
Author(s):  
Oluwaseun Adebayo Bamodu ◽  
Yuan-Hung Wang ◽  
Chi-Tai Yeh ◽  
Chen-Hsun Ho ◽  
Yi-Te Chiang ◽  
...  

Background: Despite its widespread use, the use of prostate-specific antigen (PSA) alone as a screening biomarker for prostate cancer (PCa) leads often to unwarranted prostate biopsy, over-diagnosis, and consequently, over-treatment, because of its limited specificity. There are reports that the apoptosis inhibitor of macrophage (AIM), secreted mainly by macrophages and epithelial cells, is upregulated during inflammation and facilitates immune recognition of cancerous cells by blocking human regulator of complement activation. Objective: These controversies around the PSA utility necessitate a reexamination of its use as a screening tool. More so, despite the suggested implication of AIM in anticancer immunosurveillance, there is a dearth of information on its role in therapy response, disease progression, and clinical outcomes of patients with PCa. These inform the present study to probe the nature and role of AIM/PSA signaling in anticancer immunity and prognosis in PCa. Methods: A combination of bioinformatics-aided statistical analyses, gene function annotation, and immune infiltrate analyses, coupled with tissue staining, and function assays, namely migration, invasion, and clonogenicity assays, we employed. Results: We demonstrated that AIM and PSA expression levels are inversely correlated in PCa clinical samples and cell lines, with AIMlowPSAhigh defining PCa, compared to AIMhighPSAlow in normal samples. Concomitant aberrant PSA and significantly suppressed AIM expression levels positively correlated with high-grade disease and characterized by advanced stage prostate cancer, regardless of mutation status. We found that a high PSA/AIM ratio is associated with disease recurrence in patients with prostate cancer but is equivocal for overall survival. In addition, PSA-associated AIM suppression is implicated in the enhanced ‘metastability’ of PCa and a high AIM/PSA ratio is associated with strong castration-induced regression. CRISPR-mediated AIM knockout was associated with higher PSA expression while ectopic expression of AIM significantly attenuated the migration and invasive capability of PC3 and DU145 cells. Interestingly, compared to normal samples, we observed that AIM, biomarkers of T-cell activation and M1 phenotype markers are co-suppressed in PCa samples. Conclusion: Herein, we demonstrate that AIM/CD5L binds to PSA and that a high PSA/AIM ratio defines advanced stage PCa (regardless of mutation status), is implicated in enhanced metastability, and associated with disease recurrence, while a high AIM/PSA ratio is associated with strong castration-induced regression. More so, the ectopic expression of AIM significantly enhances the anticancer effect of Pembrolizumab and elicits an increased CD8+ T-cell count in AIMhiPSAloPDL1+ PCa cases that are respondent to Pembrolizumab treatment.


Author(s):  
Mia Aaboe Jørgensen ◽  
Stefano Ugel ◽  
Mie Linder Hübbe ◽  
Marco Carretta ◽  
Maria Perez-Penco ◽  
...  

2021 ◽  
Vol 7 (37) ◽  
Author(s):  
Yu Zhao ◽  
Yu-Qing Xie ◽  
Simon Van Herck ◽  
Sina Nassiri ◽  
Min Gao ◽  
...  

Author(s):  
Reid Loveless ◽  
Ryan Bloomquist ◽  
Yong Teng

AbstractTumor resistance to apoptosis and the immunosuppressive tumor microenvironment are two major contributors to poor therapeutic responses during cancer intervention. Pyroptosis, a lytic and inflammatory programmed cell death pathway distinct from apoptosis, has subsequently sparked notable interest among cancer researchers for its potential to be clinically harnessed and to address these problems. Recent evidence indicates that pyroptosis induction in tumor cells leads to a robust inflammatory response and marked tumor regression. Underlying its antitumor effect, pyroptosis is mediated by pore-forming gasdermin proteins that facilitate immune cell activation and infiltration through their release of pro-inflammatory cytokines and immunogenic material following cell rupture. Considering its inflammatory nature, however, aberrant pyroptosis may also be implicated in the formation of a tumor supportive microenvironment, as evidenced by the upregulation of gasdermin proteins in certain cancers. In this review, the molecular pathways leading to pyroptosis are introduced, followed by an overview of the seemingly entangled links between pyroptosis and cancer. We describe what is known regarding the impact of pyroptosis on anticancer immunity and give insight into the potential of harnessing pyroptosis as a tool and applying it to novel or existing anticancer strategies.


Author(s):  
Eileen White ◽  
Edmund C. Lattime ◽  
Jessie Yanxiang Guo

Sign in / Sign up

Export Citation Format

Share Document