Hypochlorite-induced oxidation of fibrinogen: Effects on its thermal denaturation and fibrin structure

Author(s):  
Mark A. Rosenfeld ◽  
Lyubov A. Wasserman ◽  
Alexandra D. Vasilyevaa ◽  
Nadezhda A. Podoplelova ◽  
Mikhail A. Panteleev ◽  
...  
1975 ◽  
Vol 33 (03) ◽  
pp. 573-585 ◽  
Author(s):  
Masahiro Iwamoto

SummaryInteractions between tranexamic acid and protein were studied in respect of the antifibrinolytic actions of tranexamic acid. Tranexamic acid did neither show any interaction with fibrinogen or fibrin, nor was incorporated into cross-linked fibrin structure by the action of factor XIII. On the other hand, tranexamic acid bound to human plasmin with a dissociation constant of 3.5 × 10−5 M, which was very close to the inhibition constant (3.6 × 10−5 M) for this compound in inhibiting plasmin-induced fibrinolysis. The binding site of tranexamic acid on plasmin was not the catalytic site of plasmin, because TLCK-blocked plasmin also showed a similar affinity to tranexamic acid (the dissociation constant, 2.9–4.8 × 10−5 M).In the binding studies with the highly purified plasminogen and TLCK-plasmin preparations which were obtained by affinity chromatography on lysine-substituted Sepharose, the molar binding ratio was shown to be 1.5–1.6 moles tranexamic acid per one mole protein.On the basis of these and other findings, a model for the inhibitory mechanism of tranexamic acid is presented.


1977 ◽  
Vol 38 (03) ◽  
pp. 0677-0684 ◽  
Author(s):  
Raymund Machovich ◽  
Péter Arányi

SummaryHeat inactivation of thrombin at 54° C followed first order kinetics with a rate constant of 1.0 min−1 approximately. Addition of heparin resulted in protection against thermal denaturation and, at the same time, rendered denaturation kinetics more complex. Analysis of the biphasic curve of heat inactivation in the presence of heparin revealed that the rate constants of the second phase changed systematically with heparin concentrations. Namely, at 4.5 × 10−6M, 9 × 10−6M, 1.8 × 10−5M and 3.6 × 10−5M heparin concentrations, the rate constants were 0.27 min−1, 0.17 min−1, 0.11 min−1 and 0.06 min−1, respectively.Sulfate as well as phosphate ions displayed also enzyme protection against heat inactivation, however, the same effect was obtained already at a heparin concentration, lower by three orders of magnitude.The kinetics of enzyme denaturation was not affected by calcium ions, whereas in the presence of heparin the inactivation rate of thrombin changed, i. e. calcium ions abolished the biphasic character of time course of thermal denaturation.Thus, the data suggest that calcium ions contribute to the effect of heparin on thrombin.


2019 ◽  
Vol 26 (7) ◽  
pp. 532-541 ◽  
Author(s):  
Cadena-Cadena Francisco ◽  
Cárdenas-López José Luis ◽  
Ezquerra-Brauer Josafat Marina ◽  
Cinco-Moroyoqui Francisco Javier ◽  
López-Zavala Alonso Alexis ◽  
...  

Background: Cathepsin D is a lysosomal enzyme that is found in all organisms acting in protein turnover, in humans it is present in some types of carcinomas, and it has a high activity in Parkinson's disease and a low activity in Alzheimer disease. In marine organisms, most of the research has been limited to corroborate the presence of this enzyme. It is known that cathepsin D of some marine organisms has a low thermostability and that it has the ability to have activity at very acidic pH. Cathepsin D of the Jumbo squid (Dosidicus gigas) hepatopancreas was purified and partially characterized. The secondary structure of these enzymes is highly conserved so the role of temperature and pH in the secondary structure and in protein denaturation is of great importance in the study of enzymes. The secondary structure of cathepsin D from jumbo squid hepatopancreas was determined by means of circular dichroism spectroscopy. Objective: In this article, our purpose was to determine the secondary structure of the enzyme and how it is affected by subjecting it to different temperature and pH conditions. Methods: Circular dichroism technique was used to measure the modifications of the secondary structure of cathepsin D when subjected to different treatments. The methodology consisted in dissecting the hepatopancreas of squid and freeze drying it. Then a crude extract was prepared by mixing 1: 1 hepatopancreas with assay buffer, the purification was in two steps; the first step consisted of using an ultrafiltration membrane with a molecular cut of 50 kDa, and the second step, a pepstatin agarose resin was used to purification the enzyme. Once the enzyme was purified, the purity was corroborated with SDS PAGE electrophoresis, isoelectric point and zymogram. Circular dichroism is carried out by placing the sample with a concentration of 0.125 mg / mL in a 3 mL quartz cell. The results were obtained in mdeg (millidegrees) and transformed to mean ellipticity per residue, using 111 g/mol molecular weight/residue as average. Secondary-structure estimation from the far-UV CD spectra was calculated using K2D Dichroweb software. Results: It was found that α helix decreases at temperatures above 50 °C and above pH 4. Heating the enzyme above 70°C maintains a low percentage of α helix and increases β sheet. Far-UV CD measurements of cathepsin D showed irreversible thermal denaturation. The process was strongly dependent on the heating rate, accompanied by a process of oligomerization of the protein that appears when the sample is heated, and maintained a certain time at this temperature. An amount typically between 3 and 4% α helix of their secondary structure remains unchanged. It is consistent with an unfolding process kinetically controlled due to the presence of an irreversible reaction. The secondary structure depends on pH, and a pH above 4 causes α helix structures to be modified. Conclusion: In conclusion, cathepsin D from jumbo squid hepatopancreas showed retaining up to 4% α helix at 80°C. The thermal denaturation of cathepsin D at pH 3.5 is under kinetic control and follows an irreversible model.


Molecules ◽  
2021 ◽  
Vol 26 (12) ◽  
pp. 3538
Author(s):  
Anna Pudło ◽  
Szymon Juchniewicz ◽  
Wiesław Kopeć

The aim of the presented research was to obtain reconstituted atelocollagen fibers after extraction from poultry cartilage using the pepsin-acidic method in order to remove telopeptides from the tropocollagen. Firstly, we examined the extraction of collagen from the cartilage extracellular matrix (ECM) after proteoglycans (PG) had been removed by the action of salts, i.e., NaCl or chaotropic MgCl2. Additionally, the effects of the salt type used for PG and hyaluronic acid removal on the properties of self-assembled fibers in solutions at pH 7.4 and freeze-dried matrices were investigated. The basic features of the obtained fibers were characterized, including thermal properties using scanning calorimetry, rheological properties using dynamic oscillatory rheometry, and the structure by scanning electron microscopy. The fibers obtained after PG removal with both analyzed types of salts had similar thermal denaturation characteristics. However, the fibers after PG removal with NaCl, in contrast to those obtained after MgCl2 treatment, showed different rheological properties during gelatinization and smaller diameter size. Moreover, the degree of fibrillogenesis of collagens after NaCl treatment was complete compared to that with MgCl2, which was only partial (70%). The structures of fibers after lyophilization were fundamentally different. The matrices obtained after NaCl pretreatment form regular scaffolds in contrast to the thin, surface structures of the cartilage matrix after proteoglycans removal using MgCl2.


2020 ◽  
Vol 22 (35) ◽  
pp. 19468-19479 ◽  
Author(s):  
Keiichiro Shiraga ◽  
Mako Urabe ◽  
Takeshi Matsui ◽  
Shojiro Kikuchi ◽  
Yuichi Ogawa

The biological functions of proteins depend on harmonization with hydration water surrounding them.


2007 ◽  
Vol 98 (08) ◽  
pp. 339-345 ◽  
Author(s):  
Johannes Sidelmann ◽  
Mikkel Brabrand ◽  
Robert Pedersen ◽  
Jørgen Pedersen ◽  
Kim Esbensen ◽  
...  

SummaryFibrin clots with reduced permeability, increased clot stiffness and reduced fibrinolysis susceptibility may predispose to cardiovascular disease (CVD). Little is known, however, about the structure of fibrin clots in patients with end-stage renal disease (ESRD).These patients suffer from a high risk of CVD in addition to their chronic low-grade inflammation. Using permeability, compaction and turbidity studies in 22 ESRD patients and 24 healthy controls, fibrin clots made from patient plasma were found to be less permeable (p<0.001), less compactable (p<0.001), and less susceptible to fibrinolysis (p<0.001) than clots from controls.The maximum rate of turbidity increase was also higher for the patients than controls (p<0.001), and scan-ning electron microscopy revealed higher clot density of fibrin fibers in clots from patients than clots from controls (p<0.001). Patients had higher plasma concentrations of fibrinogen, C-reative protein and interleukin 6 than controls.These plasma markers of inflammation correlated significantly with most of the fibrin structure characteristics observed in the patients. In contrast, plasma markers of azothemia showed no such correlations. The results suggest that in ESRD patients fibrin clots are significantly different from healthy controls, and that the fibrin structure characteristics in the patients are associated primarily with the inflammatory plasma milieu rather than with level of azothemia.


Sign in / Sign up

Export Citation Format

Share Document