scholarly journals Anabolic–Androgenic Steroid Abuse Impairs Fibrin Clot Lysis

Author(s):  
Johannes Jakobsen Sidelmann ◽  
Jørgen Brodersen Gram ◽  
Jon J. Rasmussen ◽  
Caroline Kistorp

AbstractAbuse of anabolic–androgenic steroids (AASs) is suspected to increase the risk of cardiovascular disease (CVD) and cardiovascular mortality in otherwise healthy individuals. AAS abuse may increase the incidence of CVD by altering the hemostatic balance toward a procoagulant state. Studies on the effect of AAS abuse on the fibrinolytic system, however, have either demonstrated a profibrinolytic effect or no effect of AAS abuse, but the overall effect of AAS on fibrinolysis has not been addressed so far. This cross-sectional study investigated the effect of AAS on fibrin clot lysis, fibrin structure, and the hemostatic proteins, potentially affecting these measures in current and former AAS abusers and healthy age-matched controls. The study population consisted of 37 current and 33 former AAS abusers, along with 30 healthy age-matched controls. Fibrin clot lysis, fibrin structure properties, fibrinogen, coagulation factor XIII (FXIII) plasminogen, plasmin inhibitor, plasminogen activator inhibitor-1 (PAI-1), and thrombin activatable fibrinolysis inhibitor (TAFI) were determined. Fibrin clot lysis was significantly reduced in participants abusing AAS compared with former abusers and controls (p < 0.001). Plasma fibrinogen, plasminogen, and plasmin inhibitor were significantly increased in current abusers (p < 0.05). No significant differences were observed with respect to measures of fibrin structure properties, PAI-1, and TAFI (p > 0.05). In conclusion, AAS abuse depresses fibrin clot lysis. This effect is not associated with alterations in fibrin structure but is rather caused by increased plasma concentrations of fibrinogen, FXIII, and plasmin inhibitor. These findings suggest that AAS abuse may be associated with increased thrombotic disease.

1993 ◽  
Vol 70 (02) ◽  
pp. 301-306 ◽  
Author(s):  
Linda A Robbie ◽  
Nuala A Booth ◽  
Alison M Croll ◽  
Bruce Bennett

SummaryThe relative importance of the two major inhibitors of fibrinolysis, α2-antiplasmin (α2-AP) and plasminogen activator inhibitor (PAI-1), were investigated using a simple microtitre plate system to study fibrin clot lysis in vitro. Cross-linked fibrin clots contained plasminogen and tissue plasminogen activator (t-PA) at concentrations close to physiological. Purified α2-AP and PAI-1 caused dose-dependent inhibition. All the inhibition due to normal plasma, either platelet-rich or poor, was neutralised only by antibodies to α2-AP. Isolated platelets, at a final concentration similar to that in blood, 2.5 × 108/ml, markedly inhibited clot lysis. This inhibition was neutralised only by antibodies to PAI-1. At the normal circulating ratio of plasma to platelets, α2-AP was the dominant inhibitor. When the platelet:plasma ratio was raised some 20-fold, platelet PAI-1 provided a significant contribution. High local concentrations of PAI-1 do occur in thrombi in vivo, indicating a role for PAI-1, complementary to that of α2-AP, in such situations.


2017 ◽  
Vol 117 (07) ◽  
pp. 1338-1347 ◽  
Author(s):  
Shuangzhou Peng ◽  
Guangpu Xue ◽  
Lihu Gong ◽  
Chao Fang ◽  
Jingfei Chen ◽  
...  

SummaryPlasminogen activator inhibitor 1 (PAI-1) is the main inhibitor of tissue-type and urokinase-type plasminogen activators (t/uPA) and plays an important role in fibrinolysis. Inhibition of PAI-1 activity prevents thrombosis and accelerates fibrinolysis, indicating that PAI-1 inhibitors may be used as effective antithrombotic agents. We previously designed a PAI-1 inhibitor (PAItrap) which is a variant of inactivated urokinase protease domain. In the present study, we fused PAItrap with human serum albumin (HSA) to develop a long-acting PAI-1 inhibitor. Unfortunately, the fusion protein PAItrap-HSA lost some potency compared to PAItrap (33 nM vs 10 nM). Guided by computational method, we carried out further optimisation to enhance inhibitory potency for PAI-1. The new PAItrap, denominated PAItrap(H37R)-HSA, which was the H37R variant of PAItrap fused to HSA, gave a six-fold improvement of IC50 (5 nM) for human active PAI-1 compared to PAItrap-HSA, and showed much longer plasma half-life (200-fold) compared to PAItrap. We further demonstrated that the PAItrap(H37R)-HSA inhibited exogenous or endogenous PAI-1 to promote fibrinolysis in fibrin-clot lysis assay. PAItrap(H37R)-HSA inhibits murine PAI-1 with IC50 value of 12 nM, allowing the inhibitor to be evaluated in murine models. Using an intravital microscopy, we demonstrated that PAItrap(H37R)-HSA blocks thrombus formation and platelet accumulation in vivo in a laser-induced vascular injury mouse model. Additionally, mouse tail bleeding assay showed that PAItrap(H37R)-HSA did not affect the global haemostasis. These results suggest that PAItrap(H37R)-HSA have the potential benefit to prevent thrombosis and accelerates fibrinolysis.


1996 ◽  
Vol 75 (01) ◽  
pp. 118-126 ◽  
Author(s):  
T Abrahamsson ◽  
V Nerme ◽  
M Strömqvist ◽  
B Åkerblom ◽  
A Legnehed ◽  
...  

SummaryThe aim of this study was to investigate the anti-thrombotic effects of an inhibitor of the plasminogen activator inhibitor-1 (PAI-1) in rats given endotoxin. In studies in vitro, PRAP-1, a Fab-fragment of a polyclonal antibody against human PAI-1, was shown to inhibit PAI-1 activity in rat plasma as well as to stimulate clot-lysis of the euglobulin fraction derived from rat plasma. Endotoxin administered to anaesthetised rats produced a marked increase in plasma PAI-1 activity. To study fibrin formation and lysis in vivo after intravenous (i. v.) injection of the coagulant enzyme batroxobin, 125I-fibrinogen was administered to the animals. The thrombi formed by batroxobin were rapidly lysed in control animals, while the rate of lysis was markedly attenuated in rats given endotoxin. PRAP-1 was administered i.v. (bolus + infusion) to rats given endotoxin and batroxobin and the PAI-1 inhibitor caused a dose-dependent decrease in the 125I-fibrin deposition in the lungs. An immunohistochemical technique was used to confirm this decrease in density of fibrin clots in the tissue. Furthermore, PRAP-1 decreased plasma PAI-1 activity in the rats and this reduction was correlated to the decrease in lung 125I-fibrin deposition at the corresponding time point. It is concluded that in this experimental model the PAI-1 antibody PRAP-1 may indeed inhibit thrombosis in animals exposed to endotoxin.


1997 ◽  
Vol 77 (04) ◽  
pp. 725-729 ◽  
Author(s):  
Mario Colucci ◽  
Silvia Scopece ◽  
Antonio V Gelato ◽  
Donato Dimonte ◽  
Nicola Semeraro

SummaryUsing an in vitro model of clot lysis, the individual response to a pharmacological concentration of recombinant tissue plasminogen activator (rt-PA) and the influence on this response of the physiological variations of blood parameters known to interfere with the fibrinolytic/thrombolytic process were investigated in 103 healthy donors. 125I-fibrin labelled blood clots were submersed in autologous plasma, supplemented with 500 ng/ml of rt-PA or solvent, and the degree of lysis was determined after 3 h of incubation at 37° C. Baseline plasma levels of t-PA, plasminogen activator inhibitor 1 (PAI-1), plasminogen, α2-anti-plasmin, fibrinogen, lipoprotein (a), thrombomodulin and von Willebrand factor as well as platelet and leukocyte count and clot retraction were also determined in each donor. rt-PA-induced clot lysis varied over a wide range (28-75%) and was significantly related to endogenous t-PA, PAI-1, plasminogen (p <0.001) and age (p <0.01). Multivariate analysis indicated that both PAI-1 antigen and plasminogen independently predicted low response to rt-PA. Surprisingly, however, not only PAI-1 but also plasminogen was negatively correlated with rt-PA-ginduced clot lysis. The observation that neutralization of PAI-1 by specific antibodies, both in plasma and within the clot, did not potentiate clot lysis indicates that the inhibitor, including the platelet-derived form, is insufficient to attenuate the thrombolytic activity of a pharmacological concentration of rt-PA and that its elevation, similarly to the elevation of plasminogen, is not the cause of clot resistance but rather a coincident finding. It is concluded that the in vitro response of blood clots to rt-PA is poorly influenced by the physiological variations of the examined parameters and that factors other than those evaluated in this study interfere with clot dissolution by rt-PA. In vitro clot lysis test might help to identify patients who may be resistant to thrombolytic therapy.


Biomolecules ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 347
Author(s):  
Zsuzsa Bagoly ◽  
Barbara Baráth ◽  
Rita Orbán-Kálmándi ◽  
István Szegedi ◽  
Réka Bogáti ◽  
...  

Cross-linking of α2-plasmin inhibitor (α2-PI) to fibrin by activated factor XIII (FXIIIa) is essential for the inhibition of fibrinolysis. Little is known about the factors modifying α2-PI incorporation into the fibrin clot and whether the extent of incorporation has clinical consequences. Herein we calculated the extent of α2-PI incorporation by measuring α2-PI antigen levels from plasma and serum obtained after clotting the plasma by thrombin and Ca2+. The modifying effect of FXIII was studied by spiking of FXIII-A-deficient plasma with purified plasma FXIII. Fibrinogen, FXIII, α2-PI incorporation, in vitro clot-lysis, soluble fibroblast activation protein and α2-PI p.Arg6Trp polymorphism were measured from samples of 57 acute ischemic stroke patients obtained before thrombolysis and of 26 healthy controls. Increasing FXIII levels even at levels above the upper limit of normal increased α2-PI incorporation into the fibrin clot. α2-PI incorporation of controls and patients with good outcomes did not differ significantly (49.4 ± 4.6% vs. 47.4 ± 6.7%, p = 1.000), however it was significantly lower in patients suffering post-lysis intracranial hemorrhage (37.3 ± 14.0%, p = 0.004). In conclusion, increased FXIII levels resulted in elevated incorporation of α2-PI into fibrin clots. In stroke patients undergoing intravenous thrombolysis treatment, α2-PI incorporation shows an association with the outcome of therapy, particularly with thrombolysis-associated intracranial hemorrhage.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Yu Zuo ◽  
Mark Warnock ◽  
Alyssa Harbaugh ◽  
Srilakshmi Yalavarthi ◽  
Kelsey Gockman ◽  
...  

AbstractPatients with coronavirus disease-19 (COVID-19) are at high risk for thrombotic arterial and venous occlusions. However, bleeding complications have also been observed in some patients. Understanding the balance between coagulation and fibrinolysis will help inform optimal approaches to thrombosis prophylaxis and potential utility of fibrinolytic-targeted therapies. 118 hospitalized COVID-19 patients and 30 healthy controls were included in the study. We measured plasma antigen levels of tissue-type plasminogen activator (tPA) and plasminogen activator inhibitor-1 (PAI-1) and performed spontaneous clot-lysis assays. We found markedly elevated tPA and PAI-1 levels in patients hospitalized with COVID-19. Both factors demonstrated strong correlations with neutrophil counts and markers of neutrophil activation. High levels of tPA and PAI-1 were associated with worse respiratory status. High levels of tPA, in particular, were strongly correlated with mortality and a significant enhancement in spontaneous ex vivo clot-lysis. While both tPA and PAI-1 are elevated among COVID-19 patients, extremely high levels of tPA enhance spontaneous fibrinolysis and are significantly associated with mortality in some patients. These data indicate that fibrinolytic homeostasis in COVID-19 is complex with a subset of patients expressing a balance of factors that may favor fibrinolysis. Further study of tPA as a biomarker is warranted.


2005 ◽  
Vol 181 (2) ◽  
pp. 275-284 ◽  
Author(s):  
Maartje Verschuur ◽  
Annemarie Jellema ◽  
Else M. Bladbjerg ◽  
Edith J. M. Feskens ◽  
Ronald P. Mensink ◽  
...  

Blood ◽  
1991 ◽  
Vol 78 (2) ◽  
pp. 401-409 ◽  
Author(s):  
J Keijer ◽  
M Linders ◽  
AJ van Zonneveld ◽  
HJ Ehrlich ◽  
JP de Boer ◽  
...  

Abstract Plasminogen activator inhibitor 1 (PAI-1), an essential regulatory protein of the fibrinolytic system, harbors interaction sites for plasminogen activators (tissue-type [t-PA] and urokinase-type [u-PA]) and for fibrin. In this study, anti-PAI-1 monoclonal antibodies (MoAbs) were used to identify interaction sites of PAI-1 with these components. The binding sites of 18 different MoAbs were established and are located on five distinct “linear” areas of PAI-1. MoAbs, binding to two distinct areas of PAI-1, are able to prevent the inhibition of t-PA by PAI-1. In addition, two interaction sites for fibrin were identified on PAI-1. The area located between amino acids 110 and 145 of PAI-1 contains a binding site for both components and its significance is discussed in the context of the t-PA inhibition by fibrin-bound PAI-1. Subsequently, the MoAbs were used to assess the role of platelet-PAI-1 in clot-lysis. An in vitro clot-lysis system was used to demonstrate that clot-lysis resistance is dependent on the presence of activated platelets and that PAI-1 is a major determinant for lysis-resistance. We propose that, upon activation of platelets, PAI-1 is fixed within the clot by binding to fibrin and retains its full capacity to inhibit t-PA and u-PA.


2018 ◽  
Vol 6 (2) ◽  
pp. e531 ◽  
Author(s):  
Joseph Kamtchum-Tatuene ◽  
Henry Mwandumba ◽  
Zaid Al-Bayati ◽  
Janet Flatley ◽  
Michael Griffiths ◽  
...  

ObjectiveTo study the relationship between endothelial dysfunction, HIV infection, and stroke in Malawians.MethodsUsing a cross-sectional design, we measured plasma levels of intercellular adhesion molecule-1 (ICAM-1), plasminogen activator inhibitor-1 (PAI-1), vascular endothelial growth factor (VEGF), and soluble thrombomodulin (sTM) in stroke patients and controls, stratified by HIV status. These biomarkers were measured using ELISA. After dichotomization, each biomarker was used as the dependent variable in a multivariable logistic regression model. Primary independent variables included HIV and stroke status. Adjustment variables were age, sex, hypertension, diabetes mellitus, tobacco and alcohol consumption, personal/family history of stroke, antiretroviral therapy status, and hypercholesterolemia.ResultsSixty-one stroke cases (19 HIV+) and 168 controls (32 HIV+) were enrolled. The median age was 55 years (38.5–65.0) for controls and 52 years (38.0–73.0) for cases (p = 0.38). The median CD4+ T-cell count was 260.1 cells/mm3 (156.3–363.9) and 452 cells/mm3 (378.1–527.4) in HIV-infected cases and controls, respectively. HIV infection was independently associated with high levels of ICAM-1 (OR = 3.6, 95% CI: 1.3–10.6, p = 0.018) in controls but not in stroke cases even after excluding patients with a viral load >1,000 RNA copies/mL (OR = 4.1, 95% CI: 1.3–13.1, p = 0.017). There was no association between the clinical profiles of HIV-positive controls or HIV-positive stroke and high levels of PAI-1, VEGF, and sTM.ConclusionsHIV infection is associated with endothelial activation despite antiretroviral treatment. Our findings underscore the need for larger clinical cohorts to better understand the contribution of this perturbation of the endothelial function to the increasing burden of cardiovascular diseases in sub-Saharan Africa.


1998 ◽  
Vol 80 (12) ◽  
pp. 942-948 ◽  
Author(s):  
M. Kockx ◽  
H. M. G. Princen ◽  
T. Kooistra

SummaryFibrates are used to lower plasma triglycerides and cholesterol levels in hyperlipidemic patients. In addition, fibrates have been found to alter the plasma concentrations of fibrinogen, plasminogen activator inhibitor-1 (PAI-1) and apolipoprotein A-I (apo A-I). We have investigated the in vitro effects of fibrates on fibrinogen, PAI-1 and apo A-I synthesis and the underlying regulatory mechanisms in primary monkey hepatocytes.We show that fibrates time- and dose-dependently increase fibrinogen and apo A-I expression and decrease PAI-1 expression in cultured cynomolgus monkey hepatocytes, the effects demonstrating different potency for different fibrates. After three consecutive periods of 24 h the most effective fibrate, ciprofibrate (at 1 mmol/l), increased fibrinogen and apo A-I synthesis to 356% and 322% of control levels, respectively. Maximum inhibition of PAI-1 synthesis was about 50% of control levels and was reached by 1 mmol/l gemfibrozil or ciprofibrate after 48 h. A ligand for the retinoid-X-receptor (RXR), 9-cis retinoic acid, and specific activators of the peroxisome proliferator-activated receptor-α (PPARα), Wy14,643 and ETYA, influenced fibrinogen, PAI-1 and apo A-I expression in a similar fashion, suggesting a role for the PPARα/RXRα heterodimer in the regulation of these genes. When comparing the effects of the various compounds on PPARα trans-activation activity as determined in a PPARα-sensitive reporter gene system and the ability of the compounds to affect fibrinogen, PAI-1 and apo A-I antigen production, a good correlation (r = 0.80; p <0.01) between PPARα transactivation and fibrinogen expression was found. Apo A-I expression correlated only weakly with PPARα transactivation activity (r = 0.47; p = 0.24), whereas such a correlation was absent for PAI-1 (r = 0.03; p = 0.95). These results strongly suggest an involvement of PPARα in the regulation of fibrinogen gene expression.


Sign in / Sign up

Export Citation Format

Share Document