scholarly journals Entropy Generation Analysis of Peristaltic Flow and Heat Transfer of a Jeffery Nanofluid in a Horizontal Channel under Magnetic Environment

2019 ◽  
Vol 2019 ◽  
pp. 1-13 ◽  
Author(s):  
Aneela Bibi ◽  
Hang Xu

A mathematical model is developed to examine the behaviors of a peristalsis flow with nanoparticles in a symmetric channel under the magnetic environment. Here, the nanofluid is electrically conducted through an external magnetic field. Thermal radiation and Joule heating effects are also retained in the present analysis. Under the lubrication approach, the reduced nonlinear systems are obtained. Then, they are solved very efficiently by means of a homotopy analysis method-based package BVPh 2.0. The influences of important physical parameters on the flow behaviors are presented. Analysis of the entropy generation is illustrated. It is found that the Brownian diffusion and the thermophoresis are the two most important nanoparticle slip mechanisms in the Jeffery fluids as well. Besides, the Hartman number, the type of the Jeffery fluid, the Brinkman number, and the thermal radiation parameter play important roles on flow behaviors. Results show that the temperature profile enhanced but the nanoparticles’ volume fraction profiles lowered with increase in the Hartman number. However, using the Jeffery nanofluid induces effect on the velocity distribution that decreases with the increase in the Jeffery fluid parameter. It is also found that the generated total entropy increases with an increase in the Brownian motion parameter but with a decrease in the thermophoresis parameter.

Entropy ◽  
2020 ◽  
Vol 22 (10) ◽  
pp. 1171
Author(s):  
Umair Rashid ◽  
Dumitru Baleanu ◽  
Azhar Iqbal ◽  
Muhammd Abbas

Magnetohydrodynamic nanofluid technologies are emerging in several areas including pharmacology, medicine and lubrication (smart tribology). The present study discusses the heat transfer and entropy generation of magnetohydrodynamic (MHD) Ag-water nanofluid flow over a stretching sheet with the effect of nanoparticles shape. Three different geometries of nanoparticles—sphere, blade and lamina—are considered. The problem is modeled in the form of momentum, energy and entropy equations. The homotopy analysis method (HAM) is used to find the analytical solution of momentum, energy and entropy equations. The variations of velocity profile, temperature profile, Nusselt number and entropy generation with the influences of physical parameters are discussed in graphical form. The results show that the performance of lamina-shaped nanoparticles is better in temperature distribution, heat transfer and enhancement of the entropy generation.


Author(s):  
Mohammed Almakki ◽  
Sharadia Dey ◽  
Sabyasachi Mondal ◽  
Precious Sibanda

We investigate entropy generation in unsteady three-dimensional axisymmetric MHD nanofluid flow over a non-linearly stretching sheet. The flow is subject to thermal radiation and a chemical reaction. The conservation equations were solved using the spectral quasi-linearization method. The novelty of the work is in the study of entropy generation in three-dimensional axisymmetric MHD nanofluid and the choice of the spectral quasilinearization method as the solution method. The effects of Brownian motion and thermophoresis are also taken into account when the nanofluid particle volume fraction on the boundary in passively controlled. The results show that as the Hartman number increases, both the Nusselt number and the Sherwood number decrease whereas the skin friction increases. It is further shown that an increase in the thermal radiation parameter corresponds to a decrease in the Nusselt number. Moreover, entropy generation increases with the physical parameters.


Entropy ◽  
2018 ◽  
Vol 20 (11) ◽  
pp. 851 ◽  
Author(s):  
Nasir Shehzad ◽  
Ahmed Zeeshan ◽  
Rahmat Ellahi ◽  
Saman Rashidi

In this paper, an analytical study of internal energy losses for the non-Darcy Poiseuille flow of silver-water nanofluid due to entropy generation in porous media is investigated. Spherical-shaped silver (Ag) nanosize particles with volume fraction 0.3%, 0.6%, and 0.9% are utilized. Four illustrative models are considered: (i) heat transfer irreversibility (HTI), (ii) fluid friction irreversibility (FFI), (iii) Joule dissipation irreversibility (JDI), and (iv) non-Darcy porous media irreversibility (NDI). The governing equations of continuity, momentum, energy, and entropy generation are simplified by taking long wavelength approximations on the channel walls. The results represent highly nonlinear coupled ordinary differential equations that are solved analytically with the help of the homotopy analysis method. It is shown that for minimum and maximum averaged entropy generation, 0.3% by vol and 0.9% by vol of nanoparticles, respectively, are observed. Also, a rise in entropy is evident due to an increase in pressure gradient. The current analysis provides an adequate theoretical estimate for low-cost purification of drinking water by silver nanoparticles in an industrial process.


2019 ◽  
Vol 97 (6) ◽  
pp. 678-691 ◽  
Author(s):  
Hang Xu ◽  
Ammarah Raees ◽  
Xiao-Hang Xu

In this paper, a fully-developed, immiscible nanofluid flow in a paralleled microchannel in the presence of a magnetic field is investigated. Buongiorno’s model is applied to describe the behaviors of the nanofluid flow. Different from most previous studies on microchannel flow, here the pressure term is considered as unknown, which makes the current model compatible with the commonly accepted channel flow models. The influences of various physical parameters on important physical quantities are given. The entropy generation analysis is performed. Variations of local and global entropy generations with the magnetic field parameter, the electric field, and the viscous dissipation parameter under various ratios of the thermophoresis parameter to the Brownian motion parameter are illustrated. The results indicate that the entropy generation rate strongly depends on the thermophoresis and the Brownian motion parameters. Their increase enhances the total irreversibility of entropy generation.


2019 ◽  
Vol 8 (1) ◽  
pp. 179-192 ◽  
Author(s):  
Bhuvnesh Sharma ◽  
Sunil Kumar ◽  
M.K. Paswan

Abstract A rigorous analysis of unsteady magnetohydrodynamic mixed convection and electrically conducting nanofluid model with a stretching/shrinking wedge is presented. First, the governing partial differential equations for momentum and energy conservation are converted to coupled nonlinear ordinary differential equations by means of exact similarity transformation. The homotopy analysis method (HAM) is employed to obtain the analytical approximations for flow velocity and temperature distributions of alumina-sodium alginate naofluid. The solution is found to be dependent on some parameters including the nanoparticle volume fraction, unsteadiness parameter, magnetic parameter, mixed convection parameter and the generalized prandtl number. A systematic study is carried out to illustrate the effects of these parameters on the velocity and temperature distributions. Also, the value of skin friction coefficient and local Nusselt number are compared with copper-sodium alginate and titania-sodium alginate nanofluids.


Author(s):  
Alireza Rahimi ◽  
Aravindhan Surendar ◽  
Aygul Z. Ibatova ◽  
Abbas Kasaeipoor ◽  
Emad Hasani Malekshah

Purpose This paper aims to investigate the three-dimensional natural convection and entropy generation in the rectangular cuboid cavities included by chamfered triangular partition made by polypropylene. Design/methodology/approach The enclosure is filled by multi-walled carbon nanotubes (MWCNTs)-H2O nanofluid and air as two immiscible fluids. The finite volume approach is used for computation. The fluid flow and heat transfer are considered with combination of local entropy generation due to fluid friction and heat transfer. Moreover, a numerical method is developed based on three-dimensional solution of Navier–Stokes equations. Findings Effects of side ratio of triangular partitions (SR = 0.5, 1 and 2), Rayleigh number (103 < Ra < 105) and solid volume fraction (f = 0.002, 0.004 and 0.01 Vol.%) of nanofluid are investigated on both natural convection characteristic and volumetric entropy generation. The results show that the partitions can be a suitable method to control fluid flow and energy consumption, and three-dimensional solutions renders more accurate results. Originality/value The originality of this work is to study the three-dimensional natural convection and entropy generation of a stratified system.


Mathematics ◽  
2020 ◽  
Vol 8 (9) ◽  
pp. 1471
Author(s):  
Sivasankaran Sivanandam ◽  
Ali J. Chamkha ◽  
Fouad O. M. Mallawi ◽  
Metib S. Alghamdi ◽  
Aisha M. Alqahtani

A numeric investigation is executed to understand the impact of moving-wall direction, thermal radiation, entropy generation and nanofluid volume fraction on combined convection and energy transfer of nanoliquids in a differential heated box. The top wall of the enclosed box is assumed to move either to the left or the right direction which affects the stream inside the box. The horizontal barriers are engaged to be adiabatic. The derived mathematical model is solved by the control volume technique. The results are presented graphically to know the impact of the dissimilar ways of moving wall, Richardson number, Bejan number, thermal radiation, cup mixing and average temperatures. It is concluded that the stream and the thermal distribution are intensely affected by the moving-wall direction. It is established that the thermal radiation enhances the convection energy transport inside the enclosure.


Micromachines ◽  
2022 ◽  
Vol 13 (1) ◽  
pp. 116
Author(s):  
A. B. Vishalakshi ◽  
U. S. Mahabaleshwar ◽  
Ioannis E. Sarris

In the present paper, an MHD three-dimensional non-Newtonian fluid flow over a porous stretching/shrinking sheet in the presence of mass transpiration and thermal radiation is examined. This problem mainly focusses on an analytical solution; graphene water is immersed in the flow of a fluid to enhance the thermal efficiency. The given non-linear PDEs are mapped into ODEs via suitable transformations, then the solution is obtained in terms of incomplete gamma function. The momentum equation is analyzed, and to derive the mass transpiration analytically, this mass transpiration is used in the heat transfer analysis and to find the analytical results with a Biot number. Physical significance parameters, including volume fraction, skin friction, mass transpiration, and thermal radiation, can be analyzed with the help of graphical representations. We indicate the unique solution at stretching sheet and multiple solution at shrinking sheet. The physical scenario can be understood with the help of different physical parameters, namely a Biot number, magnetic parameter, inverse Darcy number, Prandtl number, and thermal radiation; these physical parameters control the analytical results. Graphene nanoparticles are used to analyze the present study, and the value of the Prandtl number is fixed to 6.2. The graphical representations help to discuss the results of the present work. This problem is used in many industrial applications such as Polymer extrusion, paper production, metal cooling, glass blowing, etc. At the end of this work, we found that the velocity and temperature profile increases with the increasing values of the viscoelastic parameter and solid volume fraction; additionally, efficiency is increased for higher values of thermal radiation.


2020 ◽  
pp. 57-57
Author(s):  
Muhammad Khan ◽  
Riaz Muhammad ◽  
Sumaira Qayyum ◽  
Niaz Khan ◽  
M. Jameel

The present communication addresses MHD radiative nanomaterial flow of Ree-Eying fluid between two coaxially rotating disks. Both disks are stretchable. Buongiorno model is used for nanofluids. Nanofluid aspects comprise random motion of particles (Brownian diffusion) and thermophoresis. MHD fluid is considered. Furthermore, dissipation, radiative heat flux and Ohmic heating effects are considered to model the energy equation. Total entropy rate is calculated through implementation of second thermodynamics law. Series solutions are developed through homotopy analysis method. Impacts of physical parameters on the velocity, temperature, entropy and concentration fields are discussed graphically. Skin friction coefficient and heat and mass transfer rates are numerically calculated through Tables 2-4. It is noticed that the velocity of liquid particles decreases versus higher estimations of magnetic parameter while it enhances via larger rotational parameter. Temperature field significantly increases in the presence of both Brownian diffusion and thermophoresis parameters.


2017 ◽  
Vol 6 (2) ◽  
Author(s):  
Kalpna Sharma ◽  
Sumit Gupta

AbstractThis paper investigates steady two dimensional flow of an incompressible magnetohydrodynamic (MHD) boundary layer flow and heat transfer of nanofluid over an impermeable surface in presence of thermal radiation and viscous dissipation. By using similarity transformation, the arising governing equations of momentum, energy and nanoparticle concentration are transformed into coupled nonlinear ordinary differential equations, which are than solved by homotopy analysis method (HAM). The effect of different physical parameters, namely, Prandtl number Pr, Eckert number


Sign in / Sign up

Export Citation Format

Share Document