epigenetic plasticity
Recently Published Documents


TOTAL DOCUMENTS

75
(FIVE YEARS 33)

H-INDEX

20
(FIVE YEARS 4)

2021 ◽  
Vol 1 (1) ◽  
Author(s):  
William F. Beckman ◽  
Miguel Ángel Lermo Jiménez ◽  
Pernette J. Verschure

AbstractThe vast majority of eukaryotic transcription occurs in bursts during discrete periods of promoter activity, separated by periods of deep repression and inactivity. Elucidating the factors responsible for triggering transitions between these two states has been extremely challenging, partly due to the difficulties in measuring transcriptional bursting genome-wide, but also due to the vast array of candidate transcriptional and epigenetic factors and their complex and dynamic interactions. Additionally, this long-held view of transcriptional bursting as a two-state process has become increasingly challenged, and a resulting lack in consensus on terminology of the involved events has further complicated our understanding of the molecular mechanisms involved. Here, we review the impact of epigenetics on dynamic gene expression, with a focus on transcription bursting. We summarise current understanding of the epigenetic regulation of transcription bursting and propose new terminology for the interpretation of future results measuring transcription dynamics.


2020 ◽  
Vol 48 (6) ◽  
pp. 2891-2902
Author(s):  
Mélanie A. Eckersley-Maslin

The concept of cellular plasticity is particularly apt in early embryonic development, where there is a tug-of-war between the stability and flexibility of cell identity. This balance is controlled in part through epigenetic mechanisms. Epigenetic plasticity dictates how malleable cells are to change by adjusting the potential to initiate new transcriptional programmes. The higher the plasticity of a cell, the more readily it can adapt and change its identity in response to external stimuli such as differentiation cues. Epigenetic plasticity is regulated in part through the action of epigenetic priming factors which establish this permissive epigenetic landscape at genomic regulatory elements to enable future transcriptional changes. Recent studies on the DNA binding proteins Developmental Pluripotency Associated 2 and 4 (Dppa2/4) support their roles as epigenetic priming factors in facilitating cell fate transitions. Here, using Dppa2/4 as a case study, the concept of epigenetic plasticity and molecular mechanism of epigenetic priming factors will be explored. Understanding how epigenetic priming factors function is key not only to improve our understanding of the tight control of development, but also to give insights into how this goes awry in diseases of cell identity, such as cancer.


Haematologica ◽  
2020 ◽  
Author(s):  
Andrew B. Das ◽  
Carlos C. Smith-Díaz ◽  
Margreet C.M. Vissers

The past decade has seen a proliferation of drugs that target epigenetic pathways. Many of these drugs were developed to treat acute myeloid leukemia, a condition in which dysregulation of the epigenetic landscape is well established. While these drugs have shown promise, critical issues persist. Specifically, patients with the same mutations respond quite differently to treatment. This is true even with highly specific drugs that are designed to target the underlying oncogenic driver mutations. Furthermore, patients who do respond may eventually develop resistance. There is now evidence that epigenetic heterogeneity contributes, in part, to these issues. Cancer cells also have a remarkable capacity to ‘rewire’ themselves at the epigenetic level in response to drug treatment, and thereby maintain expression of key oncogenes. This epigenetic plasticity is a promising new target for drug development. It is therefore important to consider combination therapy in cases in which both driver mutations and epigenetic plasticity are targeted. Using ascorbate as an example of an emerging epigenetic therapeutic, we review the evidence for its potential use in both of these modes. We provide an overview of 2-oxoglutarate dependent dioxygenases with DNA, histone and RNA demethylase activity, focusing on those which require ascorbate as a cofactor. We also evaluate their role in the development and maintenance of acute myeloid leukemia. Using this information, we highlight situations in which the use of ascorbate to restore 2-oxoglutarate dependent dioxygenase activity could prove beneficial, in contrast to contexts in which targeted inhibition of specific enzymes might be preferred. Finally, we discuss how these insights could be incorporated into the rational design of future clinical trials.


eLife ◽  
2020 ◽  
Vol 9 ◽  
Author(s):  
Xiao-Chuan Cai ◽  
Tuo Zhang ◽  
Eui-jun Kim ◽  
Ming Jiang ◽  
Ke Wang ◽  
...  

2020 ◽  
Vol 48 (4) ◽  
pp. 1609-1621 ◽  
Author(s):  
William A. Flavahan

Epigenetic processes converge on chromatin in order to direct a cell's gene expression profile. This includes both maintaining a stable cell identity, but also priming the cell for specific controlled transitions, such as differentiation or response to stimuli. In cancer, this normally tight control is often disrupted, leading to a wide scale hyper-plasticity of the epigenome and allowing stochastic gene activation and silencing, cell state transition, and potentiation of the effects of genetic lesions. Many of these epigenetic disruptions will confer a proliferative advantage to cells, allowing for a selection process to occur and leading to tumorigenesis even in the case of reversible or unstable epigenetic states. This review seeks to highlight how the fundamental epigenetic shifts in cancer contribute to tumorigenesis, and how understanding an integrated view of cancer genetics and epigenetics may more effectively guide research and treatment.


Sign in / Sign up

Export Citation Format

Share Document