Epigenetic plasticity, selection, and tumorigenesis

2020 ◽  
Vol 48 (4) ◽  
pp. 1609-1621 ◽  
Author(s):  
William A. Flavahan

Epigenetic processes converge on chromatin in order to direct a cell's gene expression profile. This includes both maintaining a stable cell identity, but also priming the cell for specific controlled transitions, such as differentiation or response to stimuli. In cancer, this normally tight control is often disrupted, leading to a wide scale hyper-plasticity of the epigenome and allowing stochastic gene activation and silencing, cell state transition, and potentiation of the effects of genetic lesions. Many of these epigenetic disruptions will confer a proliferative advantage to cells, allowing for a selection process to occur and leading to tumorigenesis even in the case of reversible or unstable epigenetic states. This review seeks to highlight how the fundamental epigenetic shifts in cancer contribute to tumorigenesis, and how understanding an integrated view of cancer genetics and epigenetics may more effectively guide research and treatment.

2020 ◽  
Author(s):  
Beatrice Borsari ◽  
Amaya Abad ◽  
Cecilia C. Klein ◽  
Ramil Nurtdinov ◽  
Alexandre Esteban ◽  
...  

SummaryWe have monitored the transcriptomic and epigenomic status of cells at twelve time-points during the transdifferentiation of human pre-B cells into macrophages. Using this data, we have investigated some fundamental questions regarding the role of chromatin in gene expression. We have found that, over time, genes are characterized by a limited number of chromatin states (combinations of histone modifications), and that, consistently, chromatin changes over genes tend to occur in a coordinated manner. We have observed strong association between these changes and gene expression only at the time of initial gene activation. Activation is preceded by H3K4me1 and H3K4me2, and followed in a precise order by most other histone modifications. Further changes in gene expression, comparable or even stronger than those at initial activation, occur without associated changes in histone modifications. The data generated here constitutes, thus, a unique resource to investigate transcriptomic and epigenomic dynamics during a differentiation process.


1991 ◽  
Vol 11 (1) ◽  
pp. 55-62 ◽  
Author(s):  
M A Marshall ◽  
W E Timberlake

The Aspergillus nidulans wetA gene is required for synthesis of cell wall layers that make asexual spores (conidia) impermeable. In wetA mutant strains, conidia take up water and autolyze rather than undergoing the final stages of maturation. wetA is activated during conidiogenesis by sequential expression of the brlA and abaA regulatory genes. To determine whether wetA regulates expression of other sporulation-specific genes, its coding region was fused to a nutritionally regulated promoter that permits gene activation in vegetative cells (hyphae) under conditions that suppress conidiation. Expression of wetA in hyphae inhibited growth and caused excessive branching. It did not lead to activation of brlA or abaA but did cause accumulation of transcripts from genes that are normally expressed specifically during the late stages of conidiation and whose mRNAs are stored in mature spores. Thus, wetA directly or indirectly regulates expression of some spore-specific genes. At least one gene (wA), whose mRNA does not occur in spores but rather accumulates in the sporogenous phialide cells, was activated by wetA, suggesting that wetA may have a regulatory function in these cells as well as in spores. We propose that wetA is responsible for activating a set of genes whose products make up the final two conidial wall layers or direct their assembly and through this activity is responsible for acquisition of spore dormancy.


2001 ◽  
Vol 1 ◽  
pp. 653-655 ◽  
Author(s):  
Jennifer E. Fox ◽  
Matthew E. Burow ◽  
John A. McLachlan

Endocrine disrupting chemicals (EDCs) include organochlorine pesticides, plastics manufacturing by-products, and certain herbicides[1]. These chemicals have been shown to disrupt hormonal signaling in exposed wildlife, lab animals, and mammalian cell culture by binding to estrogen receptors (ER-α and ER-β) and affecting the expression of estrogen responsive genes[2,3]. Additionally, certain plant chemicals, termed phytoestrogens, are also able to bind to estrogen receptors and modulate gene expression, and as such also may be considered EDCs[4]. One example of phytoestrogen action is genistein, a phytochemical produced by soybeans, binding estrogen receptors, and changing expression of estrogen responsive genes which certain studies have linked to a lower incidence of hormonally related cancers in Japanese populations[5]. Why would plants make compounds that are able to act as estrogens in the human body? Obviously, soybeans do not intentionally produce phytoestrogens to prevent breast cancer in Japanese women.


2020 ◽  
Vol 117 (48) ◽  
pp. 30805-30815
Author(s):  
Mingzhe Shen ◽  
Chae Jin Lim ◽  
Junghoon Park ◽  
Jeong Eun Kim ◽  
Dongwon Baek ◽  
...  

Transcriptional regulation is a complex and pivotal process in living cells. HOS15 is a transcriptional corepressor. Although transcriptional repressors generally have been associated with inactive genes, increasing evidence indicates that, through poorly understood mechanisms, transcriptional corepressors also associate with actively transcribed genes. Here, we show that HOS15 is the substrate receptor for an SCF/CUL1 E3 ubiquitin ligase complex (SCFHOS15) that negatively regulates plant immunity by destabilizing transcriptional activation complexes containing NPR1 and associated transcriptional activators. In unchallenged conditions, HOS15 continuously eliminates NPR1 to prevent inappropriate defense gene expression. Upon defense activation, HOS15 preferentially associates with phosphorylated NPR1 to stimulate rapid degradation of transcriptionally active NPR1 and thus limit the extent of defense gene expression. Our findings indicate that HOS15-mediated ubiquitination and elimination of NPR1 produce effects contrary to those of CUL3-containing ubiquitin ligase that coactivate defense gene expression. Thus, HOS15 plays a key role in the dynamic regulation of pre- and postactivation host defense.


2017 ◽  
Author(s):  
Amy J. Osborne ◽  
Peter K. Dearden

AbstractThe Developmental Origins of Health and Disease (DOHaD) hypothesis predicts that early-life environmental exposures can be detrimental to later-life health, and that mismatch between the pre- and postnatal environment may contribute to the growing non-communicable disease (NCD) epidemic. Within this is an increasingly recognised role for epigenetic mechanisms; epigenetic modifications can be influenced by, e.g., nutrition, and can alter gene expression in mothers and offspring. Currently, there are no whole-genome transcriptional studies of response to nutritional alteration. Thus, we sought to explore how nutrition affects the expression of genes involved in epigenetic processes in Drosophila melanogaster. We manipulated Drosophila food macronutrient composition at the F0 generation, mismatched F1 offspring back to a standard diet, and analysed the transcriptome of the F0 – F3 generations by RNA-sequencing. At F0, the altered (high protein, low carbohydrate, HPLC) diet increased expression of genes involved in epigenetic processes, with coordinated downregulation of genes involved in immunity, neurotransmission and neurodevelopment, oxidative stress and metabolism. Upon reversion to standard nutrition, mismatched F1 and F2 generations displayed multigenerational inheritance of altered gene expression. By the F3 generation, gene expression had reverted to F0 (matched) levels. These nutritionally-induced gene expression changes demonstrate that dietary alteration can upregulate epigenetic genes, which may influence the expression of genes with broad biological functions. Further, the multigenerational inheritance of the gene expression changes in F1 and F2 mismatched generations suggests a predictive adaptive response (PAR) to maternal nutrition. Our findings may help to understand the interaction between maternal diet and future offspring health, and have direct implications for the current NCD epidemic.


2015 ◽  
Author(s):  
Andrew C Bergen ◽  
Gerilyn M Olsen ◽  
Justin C Fay

Qualitative patterns of gene activation and repression are often conserved despite an abundance of quantitative variation in expression levels within and between species. A major challenge to interpreting patterns of expression divergence is knowing which changes in gene expression affect fitness. To characterize the fitness effects of gene expression divergence we placed orthologous promoters from eight yeast species upstream of malate synthase (MLS1) in Saccharomyces cerevisiae. As expected, we found these promoters varied in their expression level under activated and repressed conditions as well as in their dynamic response following loss of glucose repression. Despite these differences, only a single promoter driving near basal levels of expression caused a detectable loss of fitness. We conclude that the MLS1 promoter lies on a fitness plateau whereby even large changes in gene expression can be tolerated without a substantial loss of fitness.


Author(s):  
Charlotte A.M. Cecil

The biopsychosocial (BPS) model of psychiatry has had a major impact on our modern conceptualization of mental illness as a complex, multi-determined phenomenon. Yet, interdisciplinary BPS work remains the exception, rather than the rule in psychiatry. It has been suggested that this may stem in part from a failure of the BPS model to clearly delineate the mechanisms through which biological, psychological, and social factors co-act in the development of mental illness. This chapter discusses how epigenetic processes that regulate gene expression, such as DNA methylation, are fast emerging as a candidate mechanism for BPS interactions, with potentially widespread implications for the way that psychiatric disorders are understood, assessed, and, perhaps in future, even treated.


Author(s):  
Edward Hookway ◽  
Nicholas Athanasou ◽  
Udo Oppermann

Epigenetics is a term that refers to a collection of diverse mechanisms that are important in both the control of gene expression and the transmission of this information during cell division. Epigenetic processes are deranged in many cancers, leading to a combination of inappropriate silencing of tumour suppressor genes and overexpression of oncogenes. In this chapter, the molecular mechanisms that underpin the major epigenetic processes of DNA methylation, histone modification, and non-coding RNAs will be described in both their normal physiological roles and in the context of cancer. The challenge of understanding the complexity of the interactions between different epigenetic mechanisms and the limitations of our current knowledge will be highlighted. Therapeutic approaches towards targeting deranged epigenetic processes will also be described, such as the use of small molecule inhibitors of histone deacetylases.


2019 ◽  
Vol 2019 ◽  
pp. 1-12 ◽  
Author(s):  
Suyan Tian ◽  
Chi Wang ◽  
Bing Wang

To analyze gene expression data with sophisticated grouping structures and to extract hidden patterns from such data, feature selection is of critical importance. It is well known that genes do not function in isolation but rather work together within various metabolic, regulatory, and signaling pathways. If the biological knowledge contained within these pathways is taken into account, the resulting method is a pathway-based algorithm. Studies have demonstrated that a pathway-based method usually outperforms its gene-based counterpart in which no biological knowledge is considered. In this article, a pathway-based feature selection is firstly divided into three major categories, namely, pathway-level selection, bilevel selection, and pathway-guided gene selection. With bilevel selection methods being regarded as a special case of pathway-guided gene selection process, we discuss pathway-guided gene selection methods in detail and the importance of penalization in such methods. Last, we point out the potential utilizations of pathway-guided gene selection in one active research avenue, namely, to analyze longitudinal gene expression data. We believe this article provides valuable insights for computational biologists and biostatisticians so that they can make biology more computable.


2020 ◽  
Vol 10 (9) ◽  
pp. 3435-3443
Author(s):  
Jian Liu ◽  
Laureline Mosser ◽  
Catherine Botanch ◽  
Jean-Marie François ◽  
Jean-Pascal Capp

Abstract Chromatin structure clearly modulates gene expression noise, but the reverse influence has never been investigated, namely how the cell-to-cell expression heterogeneity of chromatin modifiers may generate variable rates of epigenetic modification. Sir2 is a well-characterized histone deacetylase of the Sirtuin family. It strongly influences chromatin silencing, especially at telomeres, subtelomeres and rDNA. This ability to influence epigenetic landscapes makes it a good model to study the largely unexplored interplay between gene expression noise and other epigenetic processes leading to phenotypic diversification. Here, we addressed this question by investigating whether noise in the expression of SIR2 was associated with cell-to-cell heterogeneity in the frequency of epigenetic silencing at subtelomeres in Saccharomyces cerevisiae. Using cell sorting to isolate subpopulations with various expression levels, we found that heterogeneity in the cellular concentration of Sir2 does not lead to heterogeneity in the epigenetic silencing of subtelomeric URA3 between these subpopulations. We also noticed that SIR2 expression noise can generate cell-to-cell variability in viability, with lower levels being associated with better viability. This work shows that SIR2 expression fluctuations are not sufficient to generate cell-to-cell heterogeneity in the epigenetic silencing of URA3 at subtelomeres in Saccharomyces cerevisiae but can strongly affect cellular viability.


Sign in / Sign up

Export Citation Format

Share Document