scholarly journals 2018 Atmospheric Motion Vector (AMV) Intercomparison Study

2019 ◽  
Vol 11 (19) ◽  
pp. 2240 ◽  
Author(s):  
David Santek ◽  
Richard Dworak ◽  
Sharon Nebuda ◽  
Steve Wanzong ◽  
Régis Borde ◽  
...  

Atmospheric Motion Vectors (AMVs) calculated by six different institutions (Brazil Center for Weather Prediction and Climate Studies/CPTEC/INPE, European Organization for the Exploitation of Meteorological Satellites/EUMETSAT, Japan Meteorological Agency/JMA, Korea Meteorological Administration/KMA, Unites States National Oceanic and Atmospheric Administration/NOAA, and the Satellite Application Facility on Support to Nowcasting and Very short range forecasting/NWCSAF) with JMA’s Himawari-8 satellite data and other common input data are here compared. The comparison is based on two different AMV input datasets, calculated with two different image triplets for 21 July 2016, and the use of a prescribed and a specific configuration. The main results of the study are summarized as follows: (1) the differences in the AMV datasets depend very much on the ‘AMV height assignment’ used and much less on the use of a prescribed or specific configuration; (2) the use of the ‘Common Quality Indicator (CQI)’ has a quantified skill in filtering collocated AMVs for an improved statistical agreement between centers; (3) Among the six AMV operational algorithms verified by this AMV Intercomparison, JMA AMV algorithm has the best overall performance considering all validation metrics, mainly due to its new height assignment method: ‘Optimal estimation method considering the observed infrared radiances, the vertical profile of the Numerical Weather Prediction wind, and the estimated brightness temperature using a radiative transfer model’.

Author(s):  
David Santek ◽  
Richard Dworak ◽  
Sharon Nebuda ◽  
Steve Wanzong ◽  
Régis Borde ◽  
...  

Atmospheric Motion Vectors (AMVs) calculated by six different institutions (Brazil Center for Weather Prediction and Climate Studies/CPTEC/INPE, European Organization for the Exploitation of Meteorological Satellites/EUMETSAT, Japan Meteorological Agency/JMA, Korea Meteorological Administration/KMA, Unites States National Oceanic and Atmospheric Administration/NOAA and the Satellite Application Facility on Support to Nowcasting/NWCSAF) with JMA’s Himawari-8 satellite data and other common input data are here compared. The comparison is based on two different AMV input datasets, calculated with two different image triplets for 21 July 2016, and the use of a prescribed and a specific configuration. The main results of the study are summarized as follows: (1) the differences in the AMV datasets depend very much on the “AMV height assignment” used and much less on the use of a prescribed or specific configuration; (2) the use of the “Common Quality Indicator (CQI)” has a quantified skill in filtering collocated AMVs for an improved statistical agreement between centers; (3) JMA AMV algorithm has the best overall performance considering all validation metrics, most likely due to its height assignment: “optimal estimation using observed radiance and NWP wind vertical profile”.


2015 ◽  
Vol 54 (12) ◽  
pp. 2479-2500 ◽  
Author(s):  
Peter Lean ◽  
Stefano Migliorini ◽  
Graeme Kelly

AbstractAtmospheric motion vectors (AMVs) have been produced for decades and remain an important source of wind information. Many studies have suggested that the traditional interpretation of AMVs as representative of the wind at cloud top is suboptimal and that they are more representative of the winds within the cloud. This paper investigates the vertical representativity of cloudy AMVs using both first-guess departure [observation − background (O − B)] statistics and the simulation-study technique. A state-of-the-art convection-permitting mesoscale model (“UKV”) is used in conjunction with a radiative transfer model and the Nowcasting Satellite Application Facility (NWCSAF) AMV package to produce synthetic AMVs over a 1-month period. The simulated upper-level AMVs suffered from large height-assignment errors uncharacteristic of those in reality; these issues were partially alleviated by using the model cloud top instead of the assigned height. In agreement with previous studies, both the simulated and real AMVs were found to have the closest fit to a layer mean of the model winds with the majority of the layer below the estimated cloud top. However, improvements in the fit between the AMVs and the model were also found by simply lowering the assigned height. A short NWP trial hinted that height reassignment might lead to short-range forecast improvements. The results of this study indicate that the simulation technique was able to match the usefulness of O − B statistics for AMVs associated with low- and medium-level clouds (albeit at a higher computational cost); however, challenges remain in the simulation of upper-level clouds.


2020 ◽  
Vol 12 (14) ◽  
pp. 2255
Author(s):  
Axel Barleben ◽  
Stéphane Haussler ◽  
Richard Müller ◽  
Matthias Jerg

The predictability of aviation turbulence is influenced by energy-intensive flow patterns that are significantly smaller than the horizontal grid scale of current numerical weather prediction (NWP) models. The parameterization of these subgrid scale (SGS) processes is possible by means of an additional prognostic equation for the temporal change of turbulence kinetic energy (TKE), whereby scale transfer terms are used. This turbulence scheme has been applied operationally for 5 years in the NWP model ICON (Icosahedral Nonhydrostatic). The most important of the source terms parameterizes the Kelvin–Helmholtz instability, better known as clear air turbulence. This shear term was subjected to a nowcasting technique, is calculated with satellite data, and shifted forward in time using motion based on optical flow estimates and atmospheric motion vector (AMV). The nowcasts include turbulence altitude as determined by an adapted height assignment scheme presented here. The case studies illustrate that the novel approach for satellite-based turbulence nowcasting is a supplement to the NWP models.


2019 ◽  
Vol 11 (17) ◽  
pp. 2054 ◽  
Author(s):  
Soo Min Oh ◽  
Régis Borde ◽  
Manuel Carranza ◽  
In-Chul Shin

We derived an atmospheric motion vector (AMV) algorithm for the Geostationary Korea Multipurpose Satellite (GEO-KOMPSAT-2A; GK-2A) launched on 4 December 2018, using the Advanced Himawari Imager (AHI) onboard Himawari-8, which is very similar to the Advanced Meteorological Imager onboard GK-2A. This study clearly describes the main steps in our algorithm and optimizes it for the target box size and height assignment methods by comparing AMVs with numerical weather prediction (NWP) and rawinsonde profiles for July 2016 and January 2017. Target box size sensitivity tests were performed from 8 × 8 to 48 × 48 pixels for three infrared channels and from 16 × 16 to 96 × 96 pixels for one visible channel. The results show that the smaller box increases the speed, whereas the larger one slows the speed without quality control. The best target box sizes were found to be 16 × 16 for CH07, 08, and 13, and 48 × 48 pixels for CH03. Height assignment sensitivity tests were performed for several methods, such as the cross-correlation coefficient (CCC), equivalent blackbody temperature (EBBT), infrared/water vapor (IR/WV) intercept, and CO2 slicing methods for a cloudy target as well as normalized total contribution (NTC) and normalized total cumulative contribution (NTCC) for a clear-air target. For a cloudy target, the CCC method is influenced by the quality of the cloud’s top pressure. Better results were found when using EBBT and IR/WV intercept methods together rather than individually. Furthermore, CO2 slicing had the best statistics. For a clear-air target, the combined use of NTC and NTCC had the best statistics. Additionally, the mean vector difference, root-mean-square (RMS) vector difference, bias, and RMS error (RMSE) between GK-2A AMVs and NWP or rawinsonde were smaller by approximately 18.2% on average than in the case of the Communication, Ocean and Meteorology Satellite (COMS) AMVs. In addition, we verified the similarity between GK-2A and Meteosat Third Generation (MTG) AMVs using the AHI of Himawari-8 from 21 July 2016. This similarity can provide evidence that the GK-2A algorithm works properly because the GK-2A AMV algorithm borrows many methods of the MTG AMV algorithm for geostationary data and inversion layer corrections. The Pearson correlation coefficients in the speed, direction, and height of the prescribed GK-2A and MTG AMVs were larger than 0.97, and the corresponding bias/RMSE were0.07/2.19 m/s, 0.21/14.8°, and 2.61/62.9 hPa, respectively, considering common quality indicator with forecast (CQIF) > 80.


2016 ◽  
Vol 55 (10) ◽  
pp. 2211-2227 ◽  
Author(s):  
Kathrin Folger ◽  
Martin Weissmann

AbstractThis study uses lidar observations from the polar-orbiting Cloud–Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) satellite to correct operational atmospheric motion vector (AMV) pressure heights. This intends to reduce the height assignment error of AMVs for their use in data assimilation. Additionally, AMVs are treated as winds in a vertical layer as proposed by several recent studies. Corrected and uncorrected AMV winds are evaluated using short-term forecasts of the global forecasting system of the German Weather Service. First, a direct lidar-based height reassignment of AMVs with collocated CALIPSO observations is evaluated. Assigning AMV winds from Meteosat-10 to ~120-hPa-deep layers below the lidar cloud top reduces the vector root-mean-square (VRMS) differences of AMVs from Meteosat-10 by 8%–15%. However, such a direct reassignment can only be applied to collocated AMV–CALIPSO observations that compose a comparably small subset of all AMVs. Second, CALIPSO observations are used to derive statistical height bias correction functions for a general height correction of all operational AMVs from Meteosat-10. Such a height bias correction achieves on average about 50% of the reduction of VRMS differences of the direct height reassignment. Results for other satellites are more ambiguous but still encouraging. Given that such a height bias correction can be applied to all AMVs from a geostationary satellite, the method exhibits a promising approach for the assimilation of AMVs in numerical weather prediction models in the future.


2016 ◽  
Author(s):  
Ghislain Picard ◽  
Quentin Libois ◽  
Laurent Arnaud

Abstract. Ice is a highly transparent material in the visible. According to the most widely used database (Warren and Brandt, 2008; IA2008), the ice absorption coefficient reaches values lower than 10−3 m−1 around 400 nm. These values were obtained from a radiance profile measured in a single snow layer at Dome C in Antarctica. We reproduced this experiment using a fiber optics inserted in the snow to record 56 profiles from which 70 homogeneous layers were identified. Applying the same estimation method on every layer yields 70 ice absorption spectra with a significant variability and overall larger than IA2008 by one order of magnitude. We devise another estimation method based on Bayesian inference. It reduces the statistical variability and confirms the higher absorption, around 2 × 10−2 m−1 near the minimum at 440 nm. We explore potential instrumental artifacts by developing a 3D radiative transfer model able to explicitly account for the presence of the fiber in the snow. The simulation results show that the radiance profile is indeed perturbed by the fiber intrusion but the error on the ice absorption estimate is not larger than a factor 2. This is insufficient to explain the difference between our new estimate and IA2008. Nevertheless, considering the number of profiles acquired for this study and other estimates from the Antarctic Muon and Neutrino Detector Array (AMANDA), we estimate that ice absorption values around 10−2 m−1 at the minimum are more likely than under 10−3 m−1. We provide a new estimate in the range 400–600 nm for future modeling of snow, cloud, and sea-ice optical properties. Most importantly we recommend that modeling studies take into account the large uncertainty of the ice absorption coefficient in the visible.


2021 ◽  
Author(s):  
Megan Stretton ◽  
William Morrison ◽  
Robin Hogan ◽  
Sue Grimmond

<p>The heterogenous structure of cities impacts radiative exchanges (e.g. albedo and heat storage). Numerical weather prediction (NWP) models often characterise the urban structure with an infinite street canyon – but this does not capture the three-dimensional urban form. SPARTACUS-Urban (SU) - a fast, multi-layer radiative transfer model designed for NWP - is evaluated using the explicit Discrete Anisotropic Radiative Transfer (DART) model for shortwave fluxes across several model domains – from a regular array of cubes to real cities .</p><p>SU agrees with DART (errors < 5.5% for all variables) when the SU assumptions of building distribution are fulfilled (e.g. randomly distribution). For real-world areas with pitched roofs, SU underestimates the albedo (< 10%) and shortwave transmission to the surface (< 15%), and overestimates wall-plus-roof absorption (9-27%), with errors increasing with solar zenith angle. SU should be beneficial to weather and climate models, as it allows more realistic urban form (cf. most schemes) without large increases in computational cost.</p>


2019 ◽  
Vol 11 (20) ◽  
pp. 2338 ◽  
Author(s):  
Liu ◽  
Chu ◽  
Yin ◽  
Liu

Accurate precipitation detection is one of the most important factors in satellite data assimilation, due to the large uncertainties associated with precipitation properties in radiative transfer models and numerical weather prediction (NWP) models. In this paper, a method to achieve remote sensing of precipitation and classify its intensity over land using a co-located ground-based radar network is described. This method is intended to characterize the O−B biases for the microwave humidity sounder -2 (MWHS-2) under four categories of precipitation: precipitation-free (0–5 dBZ), light precipitation (5–20 dBZ), moderate precipitation (20–35 dBZ), and intense precipitation (>35 dBZ). Additionally, O represents the observed brightness temperature (TB) of the satellite and B is the simulated TB from the model background field using the radiative transfer model. Thresholds for the brightness temperature differences between channels, as well as the order relation between the differences, exhibited a good estimation of precipitation. It is demonstrated that differences between observations and simulations were predominantly due to the cases in which radar reflectivity was above 15 dBZ. For most channels, the biases and standard deviations of O−B increased with precipitation intensity. Specifically, it is noted that for channel 11 (183.31 ± 1 GHz), the standard deviations of O−B under moderate and intense precipitation were even smaller than those under light precipitation and precipitation-free conditions. Likewise, abnormal results can also be seen for channel 4 (118.75 ± 0.3 GHz).


2016 ◽  
Author(s):  
Francesco De Angelis ◽  
Domenico Cimini ◽  
James Hocking ◽  
Pauline Martinet ◽  
Stefan Kneifel

Abstract. Ground-based microwave radiometers (MWR) offer a new capability to provide continuous observations of the atmospheric thermodynamic state in the planetary boundary layer. Thus, they are potential candidates to supplement radiosonde network and satellite data to improve numerical weather prediction (NWP) models through a variational assimilation of their data. However in order to assimilate MWR observations a fast radiative transfer model is required and such a model is not currently available. This is necessary for going from the model state vector space to the observation space at every observation point. The fast radiative transfer model RTTOV is well accepted in the NWP community, though it was developed to simulate satellite observations only. In this work, the RTTOV code has been modified to allow for simulations of ground-based upward looking microwave sensors. In addition, the Tangent Linear, Adjoint, and K-modules of RTTOV have been adapted to provide Jacobians (i.e. the sensitivity of observations to the atmospheric thermodynamical state) for ground-based geometry. These modules are necessary for the fast minimization of the cost function in a variational assimilation scheme. The proposed ground-based version of RTTOV, called RTTOV-gb, has been validated against accurate and less time-efficient line-by-line radiative transfer models. In the frequency range commonly used for temperature and humidity profiling (22–60 GHz), root-mean-square brightness temperature differences are smaller than typical MWR uncertainties (~ 0.5 K) at all channels used in this analysis. Brightness temperatures (TB) computed with RTTOV-gb from radiosonde profiles have been compared with nearly simultaneous and colocated ground-based MWR observations. Differences between simulated and measured TB are below 0.5 K for all channels except for the water vapor band, where most of the uncertainty comes from instrumental errors. The Jacobians calculated with the K-module of RTTOV-gb have been compared with those calculated with the brute force technique and those from the line-by-line model ARTS. Jacobians are found to be almost identical, except for liquid water content Jacobians for which a 10 % difference between ARTS and RTTOV-gb at transparent channels around 450 hPa is attributed to differences in liquid water absorption models. Finally, RTTOV-gb has been applied as the forward model operator within a 1-Dimensional Variational (1D-Var) software tool in an Observing-System Simulation Experiment (OSSE). For both temperature and humidity profiles, the 1D-Var with RTTOV-gb improves the retrievals with respect to NWP model in the first few kilometers from the ground.


2020 ◽  
Vol 13 (6) ◽  
pp. 3235-3261
Author(s):  
Steven Albers ◽  
Stephen M. Saleeby ◽  
Sonia Kreidenweis ◽  
Qijing Bian ◽  
Peng Xian ◽  
...  

Abstract. Solar radiation is the ultimate source of energy flowing through the atmosphere; it fuels all atmospheric motions. The visible-wavelength range of solar radiation represents a significant contribution to the earth's energy budget, and visible light is a vital indicator for the composition and thermodynamic processes of the atmosphere from the smallest weather scales to the largest climate scales. The accurate and fast description of light propagation in the atmosphere and its lower-boundary environment is therefore of critical importance for the simulation and prediction of weather and climate. Simulated Weather Imagery (SWIm) is a new, fast, and physically based visible-wavelength three-dimensional radiative transfer model. Given the location and intensity of the sources of light (natural or artificial) and the composition (e.g., clear or turbid air with aerosols, liquid or ice clouds, precipitating rain, snow, and ice hydrometeors) of the atmosphere, it describes the propagation of light and produces visually and physically realistic hemispheric or 360∘ spherical panoramic color images of the atmosphere and the underlying terrain from any specified vantage point either on or above the earth's surface. Applications of SWIm include the visualization of atmospheric and land surface conditions simulated or forecast by numerical weather or climate analysis and prediction systems for either scientific or lay audiences. Simulated SWIm imagery can also be generated for and compared with observed camera images to (i) assess the fidelity and (ii) improve the performance of numerical atmospheric and land surface models. Through the use of the latter in a data assimilation scheme, it can also (iii) improve the estimate of the state of atmospheric and land surface initial conditions for situational awareness and numerical weather prediction forecast initialization purposes.


Sign in / Sign up

Export Citation Format

Share Document