scholarly journals Reconstruction of the Radar Reflectivity of Convective Storms Based on Deep Learning and Himawari-8 Observations

2021 ◽  
Vol 13 (16) ◽  
pp. 3330
Author(s):  
Mingshan Duan ◽  
Jiangjiang Xia ◽  
Zhongwei Yan ◽  
Lei Han ◽  
Lejian Zhang ◽  
...  

Radar reflectivity (RR) greater than 35 dBZ usually indicates the presence of severe convective weather, which affects a variety of human activities, including aviation. However, RR data are scarce, especially in regions with poor radar coverage or substantial terrain obstructions. Fortunately, the radiance data of space-based satellites with universal coverage can be converted into a proxy field of RR. In this study, a convolutional neural network-based data-driven model is developed to convert the radiance data (infrared bands 07, 09, 13, 16, and 16–13) of Himawari-8 into the radar combined reflectivity factor (CREF). A weighted loss function is designed to solve the data imbalance problem due to the sparse convective pixels in the sample. The developed model demonstrates an overall reconstruction capability and performs well in terms of classification scores with 35 dBZ as the threshold. A five-channel input is more efficient in reconstructing the CREF than the commonly used one-channel input. In a case study of a convective event over North China in the summer using the test dataset, U-Net reproduces the location, shape and strength of the convective storm well. The present RR reconstruction technology based on deep learning and Himawari-8 radiance data is shown to be an efficient tool for producing high-resolution RR products, which are especially needed for regions without or with poor radar coverage.

2020 ◽  
Author(s):  
Jinseok Lee

BACKGROUND The coronavirus disease (COVID-19) has explosively spread worldwide since the beginning of 2020. According to a multinational consensus statement from the Fleischner Society, computed tomography (CT) can be used as a relevant screening tool owing to its higher sensitivity for detecting early pneumonic changes. However, physicians are extremely busy fighting COVID-19 in this era of worldwide crisis. Thus, it is crucial to accelerate the development of an artificial intelligence (AI) diagnostic tool to support physicians. OBJECTIVE We aimed to quickly develop an AI technique to diagnose COVID-19 pneumonia and differentiate it from non-COVID pneumonia and non-pneumonia diseases on CT. METHODS A simple 2D deep learning framework, named fast-track COVID-19 classification network (FCONet), was developed to diagnose COVID-19 pneumonia based on a single chest CT image. FCONet was developed by transfer learning, using one of the four state-of-art pre-trained deep learning models (VGG16, ResNet50, InceptionV3, or Xception) as a backbone. For training and testing of FCONet, we collected 3,993 chest CT images of patients with COVID-19 pneumonia, other pneumonia, and non-pneumonia diseases from Wonkwang University Hospital, Chonnam National University Hospital, and the Italian Society of Medical and Interventional Radiology public database. These CT images were split into a training and a testing set at a ratio of 8:2. For the test dataset, the diagnostic performance to diagnose COVID-19 pneumonia was compared among the four pre-trained FCONet models. In addition, we tested the FCONet models on an additional external testing dataset extracted from the embedded low-quality chest CT images of COVID-19 pneumonia in recently published papers. RESULTS Of the four pre-trained models of FCONet, the ResNet50 showed excellent diagnostic performance (sensitivity 99.58%, specificity 100%, and accuracy 99.87%) and outperformed the other three pre-trained models in testing dataset. In additional external test dataset using low-quality CT images, the detection accuracy of the ResNet50 model was the highest (96.97%), followed by Xception, InceptionV3, and VGG16 (90.71%, 89.38%, and 87.12%, respectively). CONCLUSIONS The FCONet, a simple 2D deep learning framework based on a single chest CT image, provides excellent diagnostic performance in detecting COVID-19 pneumonia. Based on our testing dataset, the ResNet50-based FCONet might be the best model, as it outperformed other FCONet models based on VGG16, Xception, and InceptionV3.


2020 ◽  
pp. bjophthalmol-2020-317825
Author(s):  
Yonghao Li ◽  
Weibo Feng ◽  
Xiujuan Zhao ◽  
Bingqian Liu ◽  
Yan Zhang ◽  
...  

Background/aimsTo apply deep learning technology to develop an artificial intelligence (AI) system that can identify vision-threatening conditions in high myopia patients based on optical coherence tomography (OCT) macular images.MethodsIn this cross-sectional, prospective study, a total of 5505 qualified OCT macular images obtained from 1048 high myopia patients admitted to Zhongshan Ophthalmic Centre (ZOC) from 2012 to 2017 were selected for the development of the AI system. The independent test dataset included 412 images obtained from 91 high myopia patients recruited at ZOC from January 2019 to May 2019. We adopted the InceptionResnetV2 architecture to train four independent convolutional neural network (CNN) models to identify the following four vision-threatening conditions in high myopia: retinoschisis, macular hole, retinal detachment and pathological myopic choroidal neovascularisation. Focal Loss was used to address class imbalance, and optimal operating thresholds were determined according to the Youden Index.ResultsIn the independent test dataset, the areas under the receiver operating characteristic curves were high for all conditions (0.961 to 0.999). Our AI system achieved sensitivities equal to or even better than those of retina specialists as well as high specificities (greater than 90%). Moreover, our AI system provided a transparent and interpretable diagnosis with heatmaps.ConclusionsWe used OCT macular images for the development of CNN models to identify vision-threatening conditions in high myopia patients. Our models achieved reliable sensitivities and high specificities, comparable to those of retina specialists and may be applied for large-scale high myopia screening and patient follow-up.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Mu Sook Lee ◽  
Yong Soo Kim ◽  
Minki Kim ◽  
Muhammad Usman ◽  
Shi Sub Byon ◽  
...  

AbstractWe examined the feasibility of explainable computer-aided detection of cardiomegaly in routine clinical practice using segmentation-based methods. Overall, 793 retrospectively acquired posterior–anterior (PA) chest X-ray images (CXRs) of 793 patients were used to train deep learning (DL) models for lung and heart segmentation. The training dataset included PA CXRs from two public datasets and in-house PA CXRs. Two fully automated segmentation-based methods using state-of-the-art DL models for lung and heart segmentation were developed. The diagnostic performance was assessed and the reliability of the automatic cardiothoracic ratio (CTR) calculation was determined using the mean absolute error and paired t-test. The effects of thoracic pathological conditions on performance were assessed using subgroup analysis. One thousand PA CXRs of 1000 patients (480 men, 520 women; mean age 63 ± 23 years) were included. The CTR values derived from the DL models and diagnostic performance exhibited excellent agreement with reference standards for the whole test dataset. Performance of segmentation-based methods differed based on thoracic conditions. When tested using CXRs with lesions obscuring heart borders, the performance was lower than that for other thoracic pathological findings. Thus, segmentation-based methods using DL could detect cardiomegaly; however, the feasibility of computer-aided detection of cardiomegaly without human intervention was limited.


2021 ◽  
pp. 1063293X2110031
Author(s):  
Maolin Yang ◽  
Auwal H Abubakar ◽  
Pingyu Jiang

Social manufacturing is characterized by its capability of utilizing socialized manufacturing resources to achieve value adding. Recently, a new type of social manufacturing pattern emerges and shows potential for core factories to improve their limited manufacturing capabilities by utilizing the resources from outside socialized manufacturing resource communities. However, the core factories need to analyze the resource characteristics of the socialized resource communities before making operation plans, and this is challenging due to the unaffiliated and self-driven characteristics of the resource providers in socialized resource communities. In this paper, a deep learning and complex network based approach is established to address this challenge by using socialized designer community for demonstration. Firstly, convolutional neural network models are trained to identify the design resource characteristics of each socialized designer in designer community according to the interaction texts posted by the socialized designer on internet platforms. During the process, an iterative dataset labelling method is established to reduce the time cost for training set labelling. Secondly, complex networks are used to model the design resource characteristics of the community according to the resource characteristics of all the socialized designers in the community. Two real communities from RepRap 3D printer project are used as case study.


Energies ◽  
2020 ◽  
Vol 14 (1) ◽  
pp. 156
Author(s):  
Paige Wenbin Tien ◽  
Shuangyu Wei ◽  
John Calautit

Because of extensive variations in occupancy patterns around office space environments and their use of electrical equipment, accurate occupants’ behaviour detection is valuable for reducing the building energy demand and carbon emissions. Using the collected occupancy information, building energy management system can automatically adjust the operation of heating, ventilation and air-conditioning (HVAC) systems to meet the actual demands in different conditioned spaces in real-time. Existing and commonly used ‘fixed’ schedules for HVAC systems are not sufficient and cannot adjust based on the dynamic changes in building environments. This study proposes a vision-based occupancy and equipment usage detection method based on deep learning for demand-driven control systems. A model based on region-based convolutional neural network (R-CNN) was developed, trained and deployed to a camera for real-time detection of occupancy activities and equipment usage. Experiments tests within a case study office room suggested an overall accuracy of 97.32% and 80.80%. In order to predict the energy savings that can be attained using the proposed approach, the case study building was simulated. The simulation results revealed that the heat gains could be over or under predicted when using static or fixed profiles. Based on the set conditions, the equipment and occupancy gains were 65.75% and 32.74% lower when using the deep learning approach. Overall, the study showed the capabilities of the proposed approach in detecting and recognising multiple occupants’ activities and equipment usage and providing an alternative to estimate the internal heat emissions.


2020 ◽  
Vol 22 (Supplement_2) ◽  
pp. ii148-ii148
Author(s):  
Yoshihiro Muragaki ◽  
Yutaka Matsui ◽  
Takashi Maruyama ◽  
Masayuki Nitta ◽  
Taiichi Saito ◽  
...  

Abstract INTRODUCTION It is useful to know the molecular subtype of lower-grade gliomas (LGG) when deciding on a treatment strategy. This study aims to diagnose this preoperatively. METHODS A deep learning model was developed to predict the 3-group molecular subtype using multimodal data including magnetic resonance imaging (MRI), positron emission tomography (PET), and computed tomography (CT). The performance was evaluated using leave-one-out cross validation with a dataset containing information from 217 LGG patients. RESULTS The model performed best when the dataset contained MRI, PET, and CT data. The model could predict the molecular subtype with an accuracy of 96.6% for the training dataset and 68.7% for the test dataset. The model achieved test accuracies of 58.5%, 60.4%, and 59.4% when the dataset contained only MRI, MRI and PET, and MRI and CT data, respectively. The conventional method used to predict mutations in the isocitrate dehydrogenase (IDH) gene and the codeletion of chromosome arms 1p and 19q (1p/19q) sequentially had an overall accuracy of 65.9%. This is 2.8 percent point lower than the proposed method, which predicts the 3-group molecular subtype directly. CONCLUSIONS AND FUTURE PERSPECTIVE A deep learning model was developed to diagnose the molecular subtype preoperatively based on multi-modality data in order to predict the 3-group classification directly. Cross-validation showed that the proposed model had an overall accuracy of 68.7% for the test dataset. This is the first model to double the expected value for a 3-group classification problem, when predicting the LGG molecular subtype. We plan to apply the techniques of heat map and/or segmentation for an increase in prediction accuracy.


2021 ◽  
Vol 264 ◽  
pp. 112600
Author(s):  
Robert N. Masolele ◽  
Veronique De Sy ◽  
Martin Herold ◽  
Diego Marcos Gonzalez ◽  
Jan Verbesselt ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document