hydroperoxide lyase
Recently Published Documents


TOTAL DOCUMENTS

183
(FIVE YEARS 16)

H-INDEX

37
(FIVE YEARS 3)

2022 ◽  
Vol 195 ◽  
pp. 113051
Author(s):  
Yana Y. Toporkova ◽  
Elena K. Askarova ◽  
Svetlana S. Gorina ◽  
Lucia S. Mukhtarova ◽  
Alexander N. Grechkin

Plant Science ◽  
2021 ◽  
pp. 111083
Author(s):  
Sergio Cerezo ◽  
M. Luisa Hernández ◽  
Elena Palomo-Ríos ◽  
Naima Gouffi ◽  
Lourdes García-Vico ◽  
...  

Catalysts ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 1201
Author(s):  
Veronika Kazimírová ◽  
Viktória Zezulová ◽  
Vladimír Krasňan ◽  
Vladimír Štefuca ◽  
Martin Rebroš

Cis-3-hexenal and its more stable isomer, trans-2-hexenal, are highly valued chemicals used in the food and perfume industries. They are produced by the plant lipoxygenase pathway, where two enzymes, lipoxygenase (LOX) and hydroperoxide lyase (HPL), are involved. However, the application of this pathway is limited, especially due to the instability of HPL. This enzyme belongs to the cytochrome P450 enzyme family and needs heme as a prosthetic group. Its synthesis must be effectively performed by a host organism in order to produce an active protein. In this work, Pseudomonas aeruginosa LOX was expressed in Escherichia coli BL21(DE3), and whole cells were used for the synthesis of 13(S)-hydroperoxy-(Z,E,Z)-9,11,15-octadecatrienoic acid (13-HPOT) as a substrate for HPL. Expression of Psidium guajava HPL was carried out by recombinant E. coli JM109(DE3) in autoinduction media, and the influence of the addition of heme precursors δ-ALA and FeII+ was studied. Specific activity of whole cells expressing HPL was measured by the direct use of a synthesized 13-HPOT solution (2.94 mM of total hydroperoxides, 75.35% of 13-HPOT (2.22 mM)) and increased 2.6-fold (from 61.78 U·mg−1 to 159.95 U·mg−1) with the addition of 1 mM FeII+ to the autoinduction media. Productivity and activity were further enhanced by an increase in the expression temperature, and a total of 3.30·105 U·dm−3 of culture media was produced in the optimized process.


2021 ◽  
Vol 8 ◽  
Author(s):  
Ting Zheng ◽  
Saihang Zhang ◽  
Xiangpeng Leng ◽  
Ehsan Sadeghnezhad ◽  
Teng Li ◽  
...  

A novel clonal variety of Vitis vinifera was identified from “Chardonnay” using inter-simple sequence repeat (ISSR) markers and called “bud mutation. ” The metabolomic profiles in Chardonnay and bud mutation berries indicated essential differences in the expression of key genes in the pathways of 2-C-methyl-D-erythritol-4-phosphate (MEP) and lipoxygenase-hydroperoxide lyase (LOX-HPL). Bud mutation fruits also matured 10 days earlier than Chardonnay and have higher carotenoid, sugar, and acidic compound contents. Furthermore, the gene expression was examined in the biosynthetic pathways of two ripening-associated hormones, abscisic acid (ABA) and jasmonic acid (JA), which significantly increased in bud mutation compared with the Chardonnay fruit. The synthesis and metabolism of amino acids, terpenes, fatty acids, volatile components, and specialized metabolites significantly increased in bud mutation. Therefore, in comparison with Chardonnay, bud mutation is considered a highly aroma-producing grape variety for an improvement in the beverage industry.


Catalysts ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 176
Author(s):  
Sophie Vincenti ◽  
Magali Mariani ◽  
Jessica Croce ◽  
Eva Faillace ◽  
Virginie Brunini-Bronzini de Caraffa ◽  
...  

Hydroperoxide lyase (HPL) catalyzes the synthesis of volatiles C6 or C9 aldehydes from fatty acid hydroperoxides. These short carbon chain aldehydes, known as green leaf volatiles (GLV), are widely used in cosmetic industries and as food additives because of their “fresh green” aroma. To meet the growing demand for natural GLVs, the use of recombinant HPL as a biocatalyst in enzyme-catalyzed processes appears to be an interesting application. Previously, we cloned and expressed a 13-HPL from olive fruit in Escherichia coli and showed high conversion rates (up to 94%) during the synthesis of C6 aldehydes. To consider a scale-up of this process, optimization of the recombinant enzyme production is necessary. In this study, four host-vector combinations were tested. Experimental design and response surface methodology (RSM) were used to optimize the expression conditions. Three factors were considered, i.e., temperature, inducer concentration and induction duration. The Box–Behnken design consisted of 45 assays for each expression system performed in deep-well microplates. The regression models were built and fitted well to the experimental data (R2 coefficient > 97%). The best response (production level of the soluble enzyme) was obtained with E. coli BL21 DE3 cells. Using the optimal conditions, 2277 U L−1of culture of the soluble enzyme was produced in microliter plates and 21,920 U L−1of culture in an Erlenmeyer flask, which represents a 79-fold increase compared to the production levels previously reported.


2020 ◽  
Vol 179 ◽  
pp. 112512
Author(s):  
Yana Y. Toporkova ◽  
Elena O. Smirnova ◽  
Tatiana M. Iljina ◽  
Lucia S. Mukhtarova ◽  
Svetlana S. Gorina ◽  
...  

2020 ◽  
Vol 104 (5) ◽  
pp. 1315-1333
Author(s):  
Yaqi Wang ◽  
Meifeng Liu ◽  
Dongdong Ge ◽  
Javaid Akhter Bhat ◽  
Yawei Li ◽  
...  

Foods ◽  
2020 ◽  
Vol 9 (3) ◽  
pp. 294 ◽  
Author(s):  
Nan Shan ◽  
Zengyu Gan ◽  
Jing Nie ◽  
Huan Liu ◽  
Zhenyu Wang ◽  
...  

Bagging is widely practiced to produce high quality and unblemished fruit; however, little is currently known about the effect of bagging on flavor and nutritional quality of cucumber fruits. Here we determined the influence of bagging on fruit quality of cucumber (Cucumis sativus L.) using three genotypes from different geographic groups. Exocarp chlorophyll and carotenoid levels were significantly decreased by bagging, accompanied by color change. Ascorbate content in bagged fruits decreased to some extent, while contents of soluble sugars, starch, and cellulose were comparable with those of control fruits. Compositions related to fruit flavor quality could be enhanced largely through bagging treatment, with elevation of the relative proportion of C6 aldehyde, as well as (E,Z)-2,6-nonadienal/(E)-2-nonenal ratio, and linoleic/α-linolenic acid ratio. Lipoxygenase and hydroperoxide lyase, two key enzymes in the production of volatiles, displayed distinctive transcript expression patterns and trends in changes of enzymatic activity in the bagged fruits of different genotypes. Overall, this study assesses the information on changing characteristics of fruit volatile composition and nutritional quality among different cucumber genotypes after bagging treatment. Results of this study would contribute to providing reference for mechanism study and cultivation conditions to improve cucumber fruit flavor to a considerable degree.


Agronomy ◽  
2019 ◽  
Vol 9 (12) ◽  
pp. 872 ◽  
Author(s):  
Yong Zhou ◽  
Yelan Guang ◽  
Jingwen Li ◽  
Fei Wang ◽  
Golam Jalal Ahammed ◽  
...  

Allene oxide synthase (AOS) and hydroperoxide lyase (HPL), members of the CYP74 gene family, are branches of the oxylipin pathway and play vital roles in plant responses to a number of stresses. In this study, four HPL genes and one AOS gene were identified in the watermelon genome, which were clustered into three subfamilies (CYP74A, CYP74B and CYP74C). Sequence analysis revealed that most HPL and AOS proteins from various plants contain representative domains, including Helix-I region, Helix-K region (ExxR) and Heme-binding domain. A number of development-, stress-, and hormone-related cis-elements were found in the promoter regions of the ClAOS and ClHPL genes, and the detected ClAOS and ClHPL genes were differentially expressed in different tissues and fruit development stages, as well as in response to various hormones. In addition, red light could enhance the expression of ClAOS in root-knot nematode-infected leaves and roots of watermelon, implying that ClAOS might play a primary role in red light-induced resistance against root-knot nematodes. These findings lay a foundation for understanding the specific function of CYP74 genes in watermelon.


Sign in / Sign up

Export Citation Format

Share Document