syndromic hearing impairment
Recently Published Documents


TOTAL DOCUMENTS

64
(FIVE YEARS 11)

H-INDEX

17
(FIVE YEARS 2)

Genes ◽  
2022 ◽  
Vol 13 (1) ◽  
pp. 149
Author(s):  
María Domínguez-Ruiz ◽  
Montserrat Rodríguez-Ballesteros ◽  
Marta Gandía ◽  
Elena Gómez-Rosas ◽  
Manuela Villamar ◽  
...  

Pathogenic variants in the PJVK gene cause the DFNB59 type of autosomal recessive non-syndromic hearing impairment (AR-NSHI). Phenotypes are not homogeneous, as a few subjects show auditory neuropathy spectrum disorder (ANSD), while others show cochlear hearing loss. The numbers of reported cases and pathogenic variants are still small to establish accurate genotype-phenotype correlations. We investigated a cohort of 77 Spanish familial cases of AR-NSHI, in whom DFNB1 had been excluded, and a cohort of 84 simplex cases with isolated ANSD in whom OTOF variants had been excluded. All seven exons and exon-intron boundaries of the PJVK gene were sequenced. We report three novel DFNB59 cases, one from the AR-NSHI cohort and two from the ANSD cohort, with stable, severe to profound NSHI. Two of the subjects received unilateral cochlear implantation, with apparent good outcomes. Our study expands the spectrum of PJVK mutations, as we report four novel pathogenic variants: p.Leu224Arg, p.His294Ilefs*43, p.His294Asp and p.Phe317Serfs*20. We review the reported cases of DFNB59, summarize the clinical features of this rare subtype of AR-NSHI and discuss the involvement of PJVK in ANSD.


2021 ◽  
pp. 153537022199974
Author(s):  
Edmond Wonkam-Tingang ◽  
Isabelle Schrauwen ◽  
Kevin K Esoh ◽  
Thashi Bharadwaj ◽  
Liz M Nouel-Saied ◽  
...  

Approximately half of congenital hearing impairment cases are inherited, with non-syndromic hearing impairment (NSHI) being the most frequent clinical entity of genetic hearing impairment cases. A family from Cameroon with NSHI was investigated by performing exome sequencing using DNA samples obtained from three family members, followed by direct Sanger sequencing in additional family members and controls participants. We identified an autosomal dominantly inherited novel missense variant [NM_001174116.2:c.918G>T; p.(Q306H)] in DMXL2 gene (MIM:612186) that co-segregates with mild to profound non-syndromic sensorineural hearing impairment . The p.(Q306H) variant which substitutes a highly conserved glutamine residue is predicted deleterious by various bioinformatics tools and is absent from several genome databases. This variant was also neither found in 121 apparently healthy controls without a family history of hearing impairment , nor 112 sporadic NSHI cases from Cameroon. There is one previous report of a large Han Chinese NSHI family that segregates a missense variant in DMXL2. The present study provides additional evidence that DMXL2 is involved in hearing impairment etiology, and we suggest DMXL2 should be considered in diagnostic hearing impairment panels.


Life ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. 258
Author(s):  
Samuel Mawuli Adadey ◽  
Edmond Wonkam-Tingang ◽  
Elvis Twumasi Aboagye ◽  
Daniel Wonder Nayo-Gyan ◽  
Maame Boatemaa Ansong ◽  
...  

Mutations in connexins are the most common causes of hearing impairment (HI) in many populations. Our aim was to review the global burden of pathogenic and likely pathogenic (PLP) variants in connexin genes associated with HI. We conducted a systematic review of the literature based on targeted inclusion/exclusion criteria of publications from 1997 to 2020. The databases used were PubMed, Scopus, Africa-Wide Information, and Web of Science. The protocol was registered on PROSPERO, the International Prospective Register of Systematic Reviews, with the registration number “CRD42020169697”. The data extracted were analyzed using Microsoft Excel and SPSS version 25 (IBM, Armonk, New York, United States). A total of 571 independent studies were retrieved and considered for data extraction with the majority of studies (47.8% (n = 289)) done in Asia. Targeted sequencing was found to be the most common technique used in investigating connexin gene mutations. We identified seven connexin genes that were associated with HI, and GJB2 (520/571 publications) was the most studied among the seven. Excluding PLP in GJB2, GJB6, and GJA1 the other connexin gene variants (thus GJB3, GJB4, GJC3, and GJC1 variants) had conflicting association with HI. Biallelic GJB2 PLP variants were the most common and widespread variants associated with non-syndromic hearing impairment (NSHI) in different global populations but absent in most African populations. The most common GJB2 alleles found to be predominant in specific populations include; p.Gly12ValfsTer2 in Europeans, North Africans, Brazilians, and Americans; p.V37I and p.L79Cfs in Asians; p.W24X in Indians; p.L56Rfs in Americans; and the founder mutation p.R143W in Africans from Ghana, or with putative Ghanaian ancestry. The present review suggests that only GJB2 and GJB3 are recognized and validated HI genes. The findings call for an extensive investigation of the other connexin genes in many populations to elucidate their contributions to HI, in order to improve gene-disease pair curations, globally.


Genes ◽  
2020 ◽  
Vol 11 (11) ◽  
pp. 1249
Author(s):  
Edmond Wonkam-Tingang ◽  
Isabelle Schrauwen ◽  
Kevin K. Esoh ◽  
Thashi Bharadwaj ◽  
Liz M. Nouel-Saied ◽  
...  

DNA samples from five members of a multiplex non-consanguineous Cameroonian family, segregating prelingual and progressive autosomal recessive non-syndromic sensorineural hearing impairment, underwent whole exome sequencing. We identified novel bi-allelic compound heterozygous pathogenic variants in CLIC5. The variants identified, i.e., the missense [NM_016929.5:c.224T>C; p.(L75P)] and the splicing (NM_016929.5:c.63+1G>A), were validated using Sanger sequencing in all seven available family members and co-segregated with hearing impairment (HI) in the three hearing impaired family members. The three affected individuals were compound heterozygous for both variants, and all unaffected individuals were heterozygous for one of the two variants. Both variants were absent from the genome aggregation database (gnomAD), the Single Nucleotide Polymorphism Database (dbSNP), and the UK10K and Greater Middle East (GME) databases, as well as from 122 apparently healthy controls from Cameroon. We also did not identify these pathogenic variants in 118 unrelated sporadic cases of non-syndromic hearing impairment (NSHI) from Cameroon. In silico analysis showed that the missense variant CLIC5-p.(L75P) substitutes a highly conserved amino acid residue (leucine), and is expected to alter the stability, the structure, and the function of the CLIC5 protein, while the splicing variant CLIC5-(c.63+1G>A) is predicted to disrupt a consensus donor splice site and alter the splicing of the pre-mRNA. This study is the second report, worldwide, to describe CLIC5 involvement in human hearing impairment, and thus confirms CLIC5 as a novel non-syndromic hearing impairment gene that should be included in targeted diagnostic gene panels.


2020 ◽  
pp. 153537022096038
Author(s):  
Oluwafemi G Oluwole ◽  
Kevin K Esoh ◽  
Edmond Wonkam-Tingang ◽  
Noluthando Manyisa ◽  
Jean Jacques Noubiap ◽  
...  

Physiologically, the human and murine hearing systems are very similar, justifying the extensive use of mice in experimental models for hearing impairment (HI). About 340 murine HI genes have been reported; however, whether variants in all human-mouse ortholog genes contribute to HI has been rarely investigated. In humans, nearly 120 HI genes have been identified to date, with GJB2 and GJB6 variants accounting for half of congenital HI cases, of genetic origin, in populations of European and Asian ancestries, but not in most African populations. The contribution of variants in other known genes of HI among the populations of African ancestry is poorly studied and displays the lowest pick-up rate. We used whole exome sequencing (WES) to investigate pathogenic and likely pathogenic (PLP) variants in 34 novel human-mouse orthologs HI genes, in 40 individuals from Cameroon and South Africa diagnosed with non-syndromic hearing impairment (NSHI), and compared the data to WES data of 129 ethnically matched controls. In addition, protein modeling for selected PLP gene variants, gene enrichment, and network analyses were performed. A total of 4/38 murine genes, d6wsu163e, zfp719, grp152 and minar2, had no human orthologs. WES identified three rare PLP variants in 3/34 human-mouse orthologs genes in three unrelated Cameroonian patients, namely: OCM2, c.227G>C p.(Arg76Thr) and LRGI1, c.1657G>A p.(Gly533Arg) in a heterozygous state, and a PLP variant MCPH1, c.2311C>G p.(Pro771Ala) in a homozygous state. In silico functional analyses suggest that these human-mouse ortholog genes functionally co-expressed interactions with well-established HI genes: GJB2 and GJB6. The study found one homozygous variant in MCPH1, likely to explain HI in one patient, and suggests that human-mouse ortholog variants could contribute to the understanding of the physiology of hearing in humans. Impact statement Despite, human and murine hearing system being very similar, the contribution of variants in relevant mouse-ortholog genes to hearing impairment (HI) has not been fully investigated. The contribution of variants in the known non-syndromic hearing impairment (NSHI) genes among Africans is poorly studied, suggesting that the novel gene(s) and mutations are yet to be discovered in NSHI in the African populations. Using whole exome sequencing (WES), this study identified rare candidate pathogenic and likely pathogenic (PLP) variants in 3/34 novel human-mouse ortholog genes in 3/40 individuals, with one homozygous variant, MCPH1, c.2311C>G p.(Pro771Ala), likely to explain HI in one patient. In silico functional analyses suggest that these human-mouse ortholog genes could contribute to the understanding of the physiology of hearing in humans and thus the variants identified in those genes deserve additional investigations.


2020 ◽  
Vol 245 (15) ◽  
pp. 1355-1367 ◽  
Author(s):  
Samuel M Adadey ◽  
Kevin K Esoh ◽  
Osbourne Quaye ◽  
Geoffrey K Amedofu ◽  
Gordon A Awandare ◽  
...  

The contribution of GJB4 and GJC3 gene variants to hearing impairment in Africa has not yet been studied. Here, we investigated the contribution of these genes to autosomal recessive non-syndromic hearing impairment in Ghanaian children. Hearing-impaired children from 141 simplex and 59 multiplex families were enrolled from 11 schools for the deaf in Ghana. The coding regions of GJB4 and GJC3 were amplified, sequenced, and analyzed for the study participants previously found to be negative for GJB2 and GJB6 variants. Seven GJB4 and one GJC3 variants were identified. One out of the seven GJB4 variants was classified as likely pathogenic, while the others were either benign or synonymous. The likely pathogenic variant (p.Asn119Thr/rs190460237) was predicted to be likely associated with hearing impairment. We modeled the wild-type and mutant proteins of this variant (p.Asn119Thr) to evaluate the effect of the mutation on protein structure and ligand-binding properties. The mutant and not the wild type had the potential to bind N-Ethyl-5ʹ-Carboxamido Adenosine (DB03719) which was due to a slight structural change that was observed. No clinically relevant variant was identified in the GJC3 gene. We report for the first time a likely pathogenic GJB4 variant that may be associated with non-syndromic hearing impairment in Ghana; the finding will add to the body of evidence of the contribution of GJB4 to hearing impairment cases around the world. Impact statement Although connexins are known to be the major genetic factors associated with HI, only a few studies have investigated GJB4 and GJC3 variants among hearing-impaired patients. This study is the first to report GJB4 and GJC3 variants from an African HI cohort. We have demonstrated that GJB4 and GJC3 genes may not contribute significantly to HI in Ghana, hence these genes should not be considered for routine clinical screening in Ghana. However, it is important to study a larger population to determine the association of GJB4 and GJC3 variants with HI.


2020 ◽  
Vol 5 (3) ◽  
pp. 28
Author(s):  
Smita Hegde ◽  
Rajat Hegde ◽  
Suyamindra Kulkarni ◽  
Kusal Das ◽  
Pramod Gai ◽  
...  

Genes ◽  
2019 ◽  
Vol 10 (11) ◽  
pp. 844 ◽  
Author(s):  
Edmond Tingang Wonkam ◽  
Emile Chimusa ◽  
Jean Jacques Noubiap ◽  
Samuel Mawuli Adadey ◽  
Jean Valentin F. Fokouo ◽  
...  

This study aimed to investigate GJB2 (connexin 26) and GJB6 (connexin 30) mutations associated with familial non-syndromic childhood hearing impairment (HI) in Cameroon. We selected only families segregating HI, with at least two affected individuals and with strong evidence of non-environmental causes. DNA was extracted from peripheral blood, and the entire coding region of GJB2 was interrogated using Sanger sequencing. Multiplex PCR and Sanger sequencing were used to analyze the prevalence of the GJB6-D3S1830 deletion. A total of 93 patients, belonging to 41 families, were included in the analysis. Hearing impairment was sensorineural in 51 out of 54 (94.4%) patients. Pedigree analysis suggested autosomal recessive inheritance in 85.4% (35/41) of families. Hearing impairment was inherited in an autosomal dominant and mitochondrial mode in 12.2% (5/41) and 2.4% (1/41) of families, respectively. Most HI participants were non-syndromic (92.5%; 86/93). Four patients from two families presented with type 2 Waardenburg syndrome, and three cases of type 2 Usher syndrome were identified in one family. No GJB2 mutations were found in any of the 29 families with non-syndromic HI. Additionally, the GJB6-D3S1830 deletion was not identified in any of the HI patients. This study confirms that mutations in the GJB2 gene and the del(GJB6-D13S1830) mutation do not contribute to familial HI in Cameroon.


Sign in / Sign up

Export Citation Format

Share Document