Antibacterial activity in gelatin-bacterial cellulose composite film by thermally crosslinking with cinnamaldehyde towards food packaging application

2022 ◽  
Vol 31 ◽  
pp. 100766
Author(s):  
Nutchanat Thongsrikhem ◽  
Siriporn Taokaew ◽  
Malinee Sriariyanun ◽  
Suchata Kirdponpattara
2021 ◽  
Author(s):  
Nasser H. Mohammad ◽  
gamal Mohamed elsherbiny ◽  
Ali A. Hammad ◽  
Ahmed A. Askar ◽  
Salwa A. Abou El Nour

Abstract Antibacterial coatings based on bacterial cellulose (BC) have been widely used in many fields including food packaging and wound dressing. In this study, we aimed to synthesis of colloidal AgNPs and BC/ AgNP composite by using BC as a reducing and capping agent in one step reaction induced by gamma-ray. Bacterial strain Komagataeibacter rhaeticus N1 MW322708 was used for biosynthesis BC by inoculation on Hestrin and Schramm medium and incubated statically at 35 °C for 10 days. BC sheet was formed, harvested, purified, and dried, then used for the synthesis of AgNPs and BC/AgNP by soaked 0.05 g of dried BC in 10ml of 1mM aqueous AgNO3 solution for 2h and then irradiated by gamma-ray under different doses. Color change from yellow to deep brown indicated the synthesis of AgNPs and BC/AgNP. The optical spectra of synthesized AgNPs revealed that the surface plasmon resonance was localized around 420 nm. DLS analysis showed that the mean diameter of AgNPs was 49.5 nm with a -19.36-mV value of zeta potential. TEM images revealed the spherical shape of synthesized AgNPs. The results of FESEM, FTIR, and XRD confirmed the formation of BC/AgNO3 composite. The highly crystalline nature of the BC membrane and BC/AgNP composite was observed in XRD measurements with a crystal size of 5.416 and 5.409 nm, respectively. The antibacterial activity of BC and BC/AgNP against pathogenic bacterial isolated from Pastirma food samples revealed that BC does not show antibacterial activity, while BC/AgNP composite showed antibacterial potency against Staphylococcus aureus, Enterococcus faecalis, Listeria monocytogenes, Proteus mirabilis, and Escherichia coli, with an inhibition zone of (mm) 9±1, 9±0.57, 10±1.15, 8±0.5 and 7±0.28, respectively. We concluded that this novel method presented in this paper offers a promising route for both AgNPs and BC/AgNP composites synthesis using a green, renewable biopolymer as a multifunctional agent and potential to be applied in the future development of food packing, biomedical instruments, and therapeutics.


Polymers ◽  
2020 ◽  
Vol 12 (9) ◽  
pp. 2096
Author(s):  
Wenting Lan ◽  
Siying Li ◽  
Shiti Shama ◽  
Yuqing Zhao ◽  
Dur E. Sameen ◽  
...  

An antibacterial and anti-oxidation composite film was prepared by a casting method using sodium alginate (SA) and apple polyphenols (APPs) as the base material and glycerol as the plasticizer. Silver nanoparticles (AgNPs) were deposited by ultrasonic-assisted electrospray method. The degree of influence of the addition ratio of SA and AgNPs and different ultrasonic time on the mechanical properties, barrier properties, optical properties, and hydrophilicity of the composite film was explored. The composite films were characterized by Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD) and scanning electron microscopy (SEM). The results showed that the SA: AgNPs ratio of 7:3 and the ultrasonic time for 30 min have the best comprehensive performance, and SA/AgNPs/APP films showed the lowest water vapor permeability value of 0.75 × 10−11 g/m·s·Pa. The composite film has good strength and softness, with tensile strength (TS) and elongation at break (E) at 23.94 MPa and 29.18%, respectively. SEM images showed that the surface of the composite film was smooth and the AgNPs’ distribution was uniform. The composite film showed broad antibacterial activity, and the antibacterial activity of Escherichia coli (92.01%) was higher than that of Staphylococcus aureus (91.26%). However, due to the addition of APP, its antioxidant activity can reach 98.39%, which has a synergistic effect on antibacterial activity. For strawberry as a model, the results showed that this composite film can prolong the shelf life of strawberries for about 8 days at 4 °C, effectively maintaining their storage quality. Compared with the commonly used PE(Polyethylene film) film on the market, it has a greater fresh-keeping effect and can be used as an active food packaging material.


2021 ◽  
Author(s):  
Saichon Sriphan ◽  
Thitirat Charoonsuk ◽  
Oubonwan Sawanakarn ◽  
Supharada Khaisaat ◽  
Utchawadee Pharino ◽  
...  

Polymers ◽  
2020 ◽  
Vol 12 (8) ◽  
pp. 1647
Author(s):  
Gulden Nagmetova ◽  
Anna Berthold-Pluta ◽  
Monika Garbowska ◽  
Askar Kurmanbayev ◽  
Lidia Stasiak-Różańska

Biocellulose, named “the biomaterial of the future”, is a natural and ecologically friendly polymer, produced by selected acetic acid bacteria strains. Biocellulose impregnated with antimicrobial agents can be used as a novel, safe, and biodegradable food packaging material, helping extend the shelf life of some products and may also have the chance to replace typical plastic packaging, which is a big environmental problem these days. This study aimed to evaluate if cellulose impregned with natural oregano essential oil could show antibacterial activity against Cronobacter strains, which can occur in food, causing diseases and food poisoning. Bacterial cellulose was obtained from two acetic bacteria strains, Gluconacetobacter hansenii ATCC 23769 and Komagataeibacter sp. GH1. Antibacterial activity was studied by the disc-diffusion method against chosen Cronobacter strains, isolated from the plant matrix. Oregano essential oil has been shown to penetrate into the structure of bacterial cellulose, and after applying cellulose to the solid medium, it showed the ability to migrate. Biopolymer from the strain K. sp. GH1 was able to better absorb and retain essential oregano oil (OEO) compared to bacterial cellulose (BC) produced by the G. hansenii ATCC 23769. Bacterial cellulose with oregano essential oil from strain Komagataeibacter GH1 showed generally greater inhibitory properties for the growth of tested strains than its equivalent obtained from G. hansenii. This was probably due to the arrangement of the polymer fibers and its final thickness. The largest zone of inhibition of strain growth was observed in relation to C. condimenti s37 (32.75 mm ± 2.8). At the same time, the control sample using filter paper showed an inhibition zone of 36.0 mm ± 0.7. A similar inhibition zone (28.33 mm ± 2.6) was observed for the C. malonaticus lv31 strain, while the zone in the control sample was 27.1 mm ± 0.7. Based on this study, it was concluded that bacterial cellulose impregnated with oregano essential oil has strong and moderate antimicrobial activity against all presented strains of the genus Cronobacter isolated from plant matrix. Obtained results give a strong impulse to use this biopolymer as ecological food packaging in the near future.


2010 ◽  
Vol 79 (2) ◽  
pp. 455-460 ◽  
Author(s):  
Ong-ard Saibuatong ◽  
Muenduen Phisalaphong

Polymers ◽  
2018 ◽  
Vol 10 (10) ◽  
pp. 1052 ◽  
Author(s):  
Yanxiang Li ◽  
Jessica Tian ◽  
Chuanfang Yang ◽  
Benjamin Hsiao

Cellulose is a natural polymer that is widely used in daily life, but it is susceptible to microorganism growth. In this study, a simple sol–gel technique was utilized to incorporate the cellulose scaffold with Ag/TiO2 nanoparticles. The morphology and crystal structure of the as-prepared Ag/TiO2/cellulose composite film were characterized using scanning electron microscopy (SEM) and X-ray diffraction (XRD) methods. Antibacterial tests involving the use of Escherichia coli (E. coli) were carried out under dark and UV-light conditions to evaluate the efficiency of the Ag/TiO2/cellulose composite film in comparison with pristine cellulose paper and TiO2/cellulose composite film. The results indicated that the antibacterial activity of the Ag/TiO2/cellulose composite film outperformed all other samples, where the Ag content of 0.030 wt% could inhibit more than 99% of E. coli. This study suggests that finely dispersed nanocale Ag/TiO2 particles in the cellulose scaffold were effective at slowing down bacterial growth, and the mechanisms of this are also discussed.


Sign in / Sign up

Export Citation Format

Share Document