scholarly journals Hybrid Neural Network Reduced Order Modelling for Turbulent Flows with Geometric Parameters

Fluids ◽  
2021 ◽  
Vol 6 (8) ◽  
pp. 296
Author(s):  
Matteo Zancanaro ◽  
Markus Mrosek ◽  
Giovanni Stabile ◽  
Carsten Othmer ◽  
Gianluigi Rozza

Geometrically parametrized partial differential equations are currently widely used in many different fields, such as shape optimization processes or patient-specific surgery studies. The focus of this work is some advances on this topic, capable of increasing the accuracy with respect to previous approaches while relying on a high cost–benefit ratio performance. The main scope of this paper is the introduction of a new technique combining a classical Galerkin-projection approach together with a data-driven method to obtain a versatile and accurate algorithm for the resolution of geometrically parametrized incompressible turbulent Navier–Stokes problems. The effectiveness of this procedure is demonstrated on two different test cases: a classical academic back step problem and a shape deformation Ahmed body application. The results provide insight into details about the properties of the architecture we developed while exposing possible future perspectives for this work.

Author(s):  
Ruofan Du ◽  
Chao Yan ◽  
Feng Qu ◽  
Ling Zhou

Turbulence plays a key role in the aerospace design process. It is common that incompressible and compressible flows coexist in turbulent flows around aerospace vehicles. However, most upwind schemes in compressible solvers were designed to capture shock waves and have been proved to have difficulties in predicting low-speed flow regions. In order to overcome this defect, many all-speed schemes have been proposed. This paper investigates the properties of the all-speed schemes when applying to Reynolds averaged Navier–Stokes simulations with important low-speed features. First, the correctness of our code is validated. Then four test cases are adopted to evaluate the scheme performance, including a Mach 2.85 compression ramp, the NACA 4412 airfoil, a Mach 2.92 ramped cavity and a three-dimensional surface-mounted cube. Grid-converged results from the all-speed schemes show good agreement with the experimental data and remarkable improvement when compared to standard upwind schemes. Moreover, different from the traditional preconditioning methods, the all-speed schemes are simple to realize and free from the cut-off strategy or any problem-dependent parameter. Therefore, they are expected to be widely implemented into compressible solvers and applied to all-speed turbulent flow simulations.


2013 ◽  
Vol 587 ◽  
pp. 3-14 ◽  
Author(s):  
Larry L. Hench

This paper examines challenges and opportunities for the field of bio-ceramics to achieve innovative solutions in two important areas of healthcare; regenerative medicine and personalized versus statistical-based diagnosis and therapy of individual patients. These opportunities are based upon use of new minimally invasive bio-photonics technology that can produce patient specific cell-based data to minimize costs, time and use of animals in developing and testing new bioactive ceramics. Changing the research culture is necessary to achieve significant improvements in the cost/benefit ratio of healthcare for aging populations. The approaches advocated in this paper have potential to achieve this cultural change.


2002 ◽  
Vol 41 (01) ◽  
pp. 3-13 ◽  
Author(s):  
M. Schäfers

SummaryNuclear cardiological procedures have paved the way for non-invasive diagnostics of various partial functions of the heart. Many of these functions cannot be visualised for diagnosis by any other method (e. g. innervation). These techniques supplement morphological diagnosis with regard to treatment planning and monitoring. Furthermore, they possess considerable prognostic relevance, an increasingly important issue in clinical medicine today, not least in view of the cost-benefit ratio.Our current understanding shows that effective, targeted nuclear cardiology diagnosis – in particular for high-risk patients – can contribute toward cost savings while improving the quality of diagnostic and therapeutic measures.In the future, nuclear cardiology will have to withstand mounting competition from other imaging techniques (magnetic resonance imaging, electron beam tomography, multislice computed tomography). The continuing development of these methods increasingly enables measurement of functional aspects of the heart. Nuclear radiology methods will probably develop in the direction of molecular imaging.


2020 ◽  
Vol 19 (1) ◽  
pp. 13
Author(s):  
Leury Max Da Silva Chaves ◽  
Gabriel Vinicius Santos ◽  
Cauê La Scala Teixeira ◽  
Marzo Edir Da Silva-Grigoletto

 Bodyweight exercises (also popularly known as calisthenics) is a classic training method and its practice has been widespread since the 19th century, but little evidenced in the scientific literature over the years. This type of training aims to promote multi-system adaptations using body weight as an overload with no or few implements [1–3]. This characteristic makes exercise with body weight easy to apply, in addition to having an excellent cost-benefit ratio when compared to other training possibilities that require machines or materials [4,5].


2018 ◽  
Vol 51 (3) ◽  
pp. 89-99
Author(s):  
P.B. Sandipan ◽  
P.K. Jagtap ◽  
M.C. Patel

Abstract Niger (Guizotia abyssinica Cass.) is an important minor oil seed crop grown in dry areas grown mostly by tribal and interior places as life line of tribal segment. Tribal people mainly use its oil for cooking purpose, above than that there were also other uses. Hence, the niger crop should be protected from the infection. The crop is affected by number of fungal diseases. Therefore, a field experiment was formulated for three years with the four replications at the Niger Research Station (NRS) at Navsari Agricultural University (NAU), Vanarasi, Navsari (Gujarat) on the foliar diseases of GN-1 variety of niger crop. In this experiment, six different fungicides along with one control have been evaluated to control the Alternaria and Cercospora leaf spot diseases, out of which all the fungicidal treatments were significantly superior over the control. Here, foliar spray on the incidence of diseases was compared with the control (without any treatment). All the fungicidal treatments were significantly superior over the control to reduce Alternaria and Cercospora leaf spot diseases of Niger crop. Treatment of Carbendazim + Mancozeb (0.2 %) with two sprays first from the initiation of the disease and second after the interval of 15 days recorded the lowest incidence of Alternaria (14.56) and Cercospora (14.94) leaf spot diseases of niger and recorded the highest seed yield 337 seed yield kg/ha along with the net return with cost benefit ratio graph.


Author(s):  
Surabhi Rathore ◽  
Tomoki Uda ◽  
Viet Q. H. Huynh ◽  
Hiroshi Suito ◽  
Toshitaka Watanabe ◽  
...  

AbstractHemodialysis procedure is usually advisable for end-stage renal disease patients. This study is aimed at computational investigation of hemodynamical characteristics in three-dimensional arteriovenous shunt for hemodialysis, for which computed tomography scanning and phase-contrast magnetic resonance imaging are used. Several hemodynamical characteristics are presented and discussed depending on the patient-specific morphology and flow conditions including regurgitating flow from the distal artery caused by the construction of the arteriovenous shunt. A simple backflow prevention technique at an outflow boundary is presented, with stabilized finite element approaches for incompressible Navier–Stokes equations.


Author(s):  
Michael Leschziner ◽  
Ning Li ◽  
Fabrizio Tessicini

This paper provides a discussion of several aspects of the construction of approaches that combine statistical (Reynolds-averaged Navier–Stokes, RANS) models with large eddy simulation (LES), with the objective of making LES an economically viable method for predicting complex, high Reynolds number turbulent flows. The first part provides a review of alternative approaches, highlighting their rationale and major elements. Next, two particular methods are introduced in greater detail: one based on coupling near-wall RANS models to the outer LES domain on a single contiguous mesh, and the other involving the application of the RANS and LES procedures on separate zones, the former confined to a thin near-wall layer. Examples for their performance are included for channel flow and, in the case of the zonal strategy, for three separated flows. Finally, a discussion of prospects is given, as viewed from the writer's perspective.


2011 ◽  
Vol 21 (03) ◽  
pp. 421-457 ◽  
Author(s):  
RAPHAËL DANCHIN ◽  
MARIUS PAICU

Models with a vanishing anisotropic viscosity in the vertical direction are of relevance for the study of turbulent flows in geophysics. This motivates us to study the two-dimensional Boussinesq system with horizontal viscosity in only one equation. In this paper, we focus on the global existence issue for possibly large initial data. We first examine the case where the Navier–Stokes equation with no vertical viscosity is coupled with a transport equation. Second, we consider a coupling between the classical two-dimensional incompressible Euler equation and a transport–diffusion equation with diffusion in the horizontal direction only. For both systems, we construct global weak solutions à la Leray and strong unique solutions for more regular data. Our results rest on the fact that the diffusion acts perpendicularly to the buoyancy force.


1994 ◽  
Vol 47 (6S) ◽  
pp. S3-S13 ◽  
Author(s):  
Parviz Moin ◽  
Thomas Bewley

A brief review of current approaches to active feedback control of the fluctuations arising in turbulent flows is presented, emphasizing the mathematical techniques involved. Active feedback control schemes are categorized and compared by examining the extent to which they are based on the governing flow equations. These schemes are broken down into the following categories: adaptive schemes, schemes based on heuristic physical arguments, schemes based on a dynamical systems approach, and schemes based on optimal control theory applied directly to the Navier-Stokes equations. Recent advances in methods of implementing small scale flow control ideas are also reviewed.


2011 ◽  
Vol 64 (2) ◽  
Author(s):  
Giancarlo Alfonsi

The direct numerical simulation of turbulence (DNS) has become a method of outmost importance for the investigation of turbulence physics, and its relevance is constantly growing due to the increasing popularity of high-performance-computing techniques. In the present work, the DNS approach is discussed mainly with regard to turbulent shear flows of incompressible fluids with constant properties. A body of literature is reviewed, dealing with the numerical integration of the Navier-Stokes equations, results obtained from the simulations, and appropriate use of the numerical databases for a better understanding of turbulence physics. Overall, it appears that high-performance computing is the only way to advance in turbulence research through the front of the direct numerical simulation.


Sign in / Sign up

Export Citation Format

Share Document