formaldehyde toxicity
Recently Published Documents


TOTAL DOCUMENTS

41
(FIVE YEARS 11)

H-INDEX

9
(FIVE YEARS 2)

2021 ◽  
pp. 101512
Author(s):  
Yiduo Kou ◽  
Hang Zhao ◽  
Dehua Cuic ◽  
Hongbin Han ◽  
Zhiqian Tong

2021 ◽  
Vol 50 (8) ◽  
pp. 2241-2249
Author(s):  
Musfiroh Binti Jani ◽  
Shafiqah Shahirah Mohammad Zakaria

Biomedical waste specifically anatomical specimens and body parts will be incinerated by a local incineration facility. However, the incineration of formaldehyde fixed specimen from hospitals poses hazardous effect to human and environment due to an exposure of highly toxic gases such as dioxins and furans. In addition, this practise is considered as non-shariah compliance by Muslim community. Thus, a safer and shariah-compliance option to dispose anatomical specimens through deep burial has been introduced. The concern has been raised on the side effect of the formaldehyde treated specimen to the environment. Formaldehyde is used widely for preservation of surgical and anatomical specimens. The formaldehyde toxicity specifically on the soil, soil water, soil animals and plants should be considered after the burial of the anotamical specimens. Thus, the aim of this study was to investigate the side effect of formaldehyde on soil after the burial of formalin fixed specimen on the environment. In this study, the amount of soil elemental distribution and formaldehyde concentration of pre-burial and post-burial of biological specimen were evaluated by using Energy Dispersive X-Ray Fluorescence (EDXRF) and Ultraviolet-Visible Spectrophotometer instrument, respectively. For EDXRF analysis at Point C, soil elemental distribution after burial of dead biological specimens has higher concentration compared to before the burial. The concentration of formaldehyde at Point C was higher after the burial of dead biological specimen compared to before burial, which exceeds the tolerable concentration recommended by the World Health Organisation (WHO).


2020 ◽  
Vol 7 (2) ◽  
pp. 235-238
Author(s):  
Prince Kapoor ◽  
P. K. Sharma

Formaldehyde is the most frequently used chemical for embalming in dissection halls and tissue fixation in histopathological laboratories. Exposure to formalin by direct contact or in vapourised form by inhalation can produce various local and/or systemic toxic effects in students, instructors and staff working in dissection rooms. Its toxicity ranges from local irritation and allergic reactions to congenital defects and certain malignancies. This account highlights these adverse effects on medical students, demonstrators, and other staff handling the cadavers at the Anatomy department. It also suggests certain measures and precautions that can minimize formaldehyde toxicity to students and staff in gross anatomy laboratories.


2020 ◽  
Author(s):  
Jannell V. Bazurto ◽  
Eric L. Bruger ◽  
Jessica A. Lee ◽  
Leah B. Lambert ◽  
Christopher J. Marx

ABSTRACTFor bacteria to thrive they must be well-adapted to their environmental niche, which may involve specialized metabolism, timely adaptation to shifting environments, and/or the ability to mitigate numerous stressors. These attributes are highly dependent on cellular machinery that can sense both the external and intracellular environment. Methylorubrum extorquens is an extensively studied facultative methylotroph, an organism that can use single-carbon compounds as their sole source of carbon and energy. In methylotrophic metabolism, carbon flows through formaldehyde as a central metabolite; thus, formaldehyde is both an obligate metabolite and a metabolic stressor. Via the one-carbon dissimilation pathway, free formaldehyde is rapidly incorporated by formaldehyde activating enzyme (Fae), which is constitutively expressed at high levels. In the presence of elevated formaldehyde levels, a recently identified formaldehyde-sensing protein, EfgA, induces growth arrest. Herein, we describe TtmR, a formaldehyde-responsive transcription factor that, like EfgA, modulates formaldehyde resistance. TtmR is a member of the MarR family of transcription factors and impacts the expression of 75 genes distributed throughout the genome, many of which are transcription factors and/or involved in stress response, including efgA. Notably, when M. extorquens is adapting its metabolic network during the transition to methylotrophy, efgA and ttmR mutants experience an imbalance in formaldehyde production and a notable growth delay. Although methylotrophy necessitates that M. extorquens maintain a relatively high level of formaldehyde tolerance, this work reveals a tradeoff between formaldehyde resistance and the efficient transition to methylotrophic growth and suggests that TtmR and EfgA play a pivotal role in maintaining this balance.ImportanceAll organisms produce formaldehyde as a byproduct of enzymatic reactions and as a degradation product of metabolites. The ubiquity of formaldehyde in cellular biology suggests all organisms have evolved mechanisms of mitigating formaldehyde toxicity. However, formaldehyde-sensing is poorly described and prevention of formaldehyde-induced damage is primarily understood in the context of detoxification. Here we use an organism that is regularly exposed to elevated intracellular formaldehyde concentrations through high-flux one-carbon utilization pathways to gain insight into the role of formaldehyde-responsive proteins that modulate formaldehyde resistance. Using a combination of genetic and transcriptomic analyses, we identify dozens of genes putatively involved in formaldehyde resistance, determined the relationship between two different formaldehyde response systems and identified an inherent tradeoff between formaldehyde resistance and optimal transition to methylotrophic metabolism.


Chemosphere ◽  
2020 ◽  
pp. 128701 ◽  
Author(s):  
Yun Zhao ◽  
Linqing Wei ◽  
Abderrahmane Tagmount ◽  
Alex Loguinov ◽  
Amin Sobh ◽  
...  

2020 ◽  
pp. 1-13
Author(s):  
Letícia Bernardini ◽  
Eduardo Barbosa ◽  
Mariele Feiffer Charão ◽  
Natália Brucker

2020 ◽  
Vol 8 (6) ◽  
pp. 822
Author(s):  
Patcha Yanpirat ◽  
Yukari Nakatsuji ◽  
Shota Hiraga ◽  
Yoshiko Fujitani ◽  
Terumi Izumi ◽  
...  

Lanthanides (Ln) are an essential cofactor for XoxF-type methanol dehydrogenases (MDHs) in Gram-negative methylotrophs. The Ln3+ dependency of XoxF has expanded knowledge and raised new questions in methylotrophy, including the differences in characteristics of XoxF-type MDHs, their regulation, and the methylotrophic metabolism including formaldehyde oxidation. In this study, we genetically identified one set of Ln3+- and Ca2+-dependent MDHs (XoxF1 and MxaFI), that are involved in methylotrophy, and an ExaF-type Ln3+-dependent ethanol dehydrogenase, among six MDH-like genes in Methylobacterium aquaticum strain 22A. We also identified the causative mutations in MxbD, a sensor kinase necessary for mxaF expression and xoxF1 repression, for suppressive phenotypes in xoxF1 mutants defective in methanol growth even in the absence of Ln3+. Furthermore, we examined the phenotypes of a series of formaldehyde oxidation-pathway mutants (fae1, fae2, mch in the tetrahydromethanopterin (H4MPT) pathway and hgd in the glutathione-dependent formaldehyde dehydrogenase (GSH) pathway). We found that MxaF produces formaldehyde to a toxic level in the absence of the formaldehyde oxidation pathways and that either XoxF1 or ExaF can oxidize formaldehyde to alleviate formaldehyde toxicity in vivo. Furthermore, the GSH pathway has a supportive role for the net formaldehyde oxidation in addition to the H4MPT pathway that has primary importance. Studies on methylotrophy in Methylobacterium species have a long history, and this study provides further insights into genetic and physiological diversity and the differences in methylotrophy within the plant-colonizing methylotrophs.


2020 ◽  
Vol 477 (9) ◽  
pp. 1745-1757 ◽  
Author(s):  
Jenelle A. Patterson ◽  
Hai He ◽  
Jacob S. Folz ◽  
Qiang Li ◽  
Mark A. Wilson ◽  
...  

Formaldehyde (HCHO) is a reactive carbonyl compound that formylates and cross-links proteins, DNA, and small molecules. It is of specific concern as a toxic intermediate in the design of engineered pathways involving methanol oxidation or formate reduction. The interest in engineering these pathways is not, however, matched by engineering-relevant information on precisely why HCHO is toxic or on what damage-control mechanisms cells deploy to manage HCHO toxicity. The only well-defined mechanism for managing HCHO toxicity is formaldehyde dehydrogenase-mediated oxidation to formate, which is counterproductive if HCHO is a desired pathway intermediate. We therefore sought alternative HCHO damage-control mechanisms via comparative genomic analysis. This analysis associated homologs of the Escherichia coli pepP gene with HCHO-related one-carbon metabolism. Furthermore, deleting pepP increased the sensitivity of E. coli to supplied HCHO but not other carbonyl compounds. PepP is a proline aminopeptidase that cleaves peptides of the general formula X-Pro-Y, yielding X + Pro-Y. HCHO is known to react spontaneously with cysteine to form the close proline analog thioproline (thiazolidine-4-carboxylate), which is incorporated into proteins and hence into proteolytic peptides. We therefore hypothesized that certain thioproline-containing peptides are toxic and that PepP cleaves these aberrant peptides. Supporting this hypothesis, PepP cleaved the model peptide Ala-thioproline-Ala as efficiently as Ala-Pro-Ala in vitro and in vivo, and deleting pepP increased sensitivity to supplied thioproline. Our data thus (i) provide biochemical genetic evidence that thioproline formation contributes substantially to HCHO toxicity and (ii) make PepP a candidate damage-control enzyme for engineered pathways having HCHO as an intermediate.


Author(s):  
Li-Hua Li ◽  
Cheng-Mu Wu ◽  
Yi-Tsung Lin ◽  
Sz-Yun Pan ◽  
Tsuey-Ching Yang

Abstract Background Formaldehyde toxicity is invariably stressful for microbes. Stenotrophomonas maltophilia, a human opportunistic pathogen, is widely distributed in different environments and has evolved an array of systems to alleviate various stresses. Objectives To characterize the role of the formaldehyde detoxification system FadRACB of S. maltophilia in formaldehyde detoxification, oxidative stress alleviation and antibiotic susceptibility. Methods Presence of the fadRACB operon was verified by RT–PCR. Single or combined deletion mutants of the fadRACB operon were constructed for functional assays. Formaldehyde, menadione and quinolone susceptibilities were assessed by observing cell viability in formaldehyde-, menadione- and quinolone-containing media, respectively. Susceptibility to hydrogen peroxide was evaluated by disc diffusion assay. The agar dilution method was used to assess bacterial antibiotic susceptibilities. Expression of fadRACB was assessed by quantitative RT–PCR. Results The fadR, fadA, fadC and fadB genes were arranged in an operon. Mutants of fadA and/or fadB were more susceptible to formaldehyde and oxidative stress than the WT KJ strain of S. maltophilia. No significant difference was observed in the ability of a fadC single mutant to ameliorate formaldehyde and oxidative stress; however, simultaneous inactivation of fadA, fadB and fadC further enhanced susceptibility to formaldehyde and oxidative stress. In addition, compared with WT KJ, the triple mutant KJΔFadACB was more susceptible to quinolones and more resistant to aminoglycosides. FadR functions as a repressor for the fadRACB operon. The FadRACB operon has moderate expression in aerobically grown WT KJ and is further derepressed by formaldehyde challenge or oxidative stress, but not by antibiotics. Conclusions The FadACB system contributes to mitigation of formaldehyde toxicity and oxidative stress and cross-protects S. maltophilia from quinolones.


2020 ◽  
Author(s):  
Jenelle A. Patterson ◽  
Hai He ◽  
Jacob S. Folz ◽  
Qiang Li ◽  
Mark A. Wilson ◽  
...  

ABSTRACTFormaldehyde (HCHO) is a reactive carbonyl compound that formylates and cross-links proteins, DNA, and small molecules. It is of specific concern as a toxic intermediate in the design of engineered pathways involving methanol oxidation or formate reduction. The high interest in engineering these pathways is not, however, matched by engineering-relevant information on precisely why HCHO is toxic or on what damage-control mechanisms cells deploy to manage HCHO toxicity. The only well-defined mechanism for managing HCHO toxicity is formaldehyde dehydrogenase-mediated oxidation to formate, which is counterproductive if HCHO is a desired pathway intermediate. We therefore sought alternative HCHO damage-control mechanisms via comparative genomic analysis. This analysis associated homologs of the Escherichia coli pepP gene with HCHO-related one-carbon metabolism. Furthermore, deleting pepP increased the sensitivity of E. coli to supplied HCHO but not other carbonyl compounds. PepP is a proline aminopeptidase that cleaves peptides of the general formula X-Pro-Y, yielding X + Pro-Y. HCHO is known to react spontaneously with cysteine to form the close proline analog thioproline (thiazolidine-4-carboxylate), which is incorporated into proteins and hence into proteolytic peptides. We therefore hypothesized that thioproline-containing peptides are toxic and that PepP cleaves these aberrant peptides. Supporting this hypothesis, PepP cleaved the model peptide Ala-thioproline-Ala as efficiently as Ala-Pro-Ala in vitro and in vivo, and deleting pepP increased sensitivity to supplied thioproline. Our data thus (i) provide biochemical genetic evidence that thioproline formation contributes substantially to HCHO toxicity and (ii) make PepP a candidate damage-control enzyme for engineered pathways having HCHO as an intermediate.


Sign in / Sign up

Export Citation Format

Share Document