landslide debris
Recently Published Documents


TOTAL DOCUMENTS

62
(FIVE YEARS 16)

H-INDEX

12
(FIVE YEARS 2)

2021 ◽  
Vol 9 ◽  
Author(s):  
Chang Zhou ◽  
Dong Ai ◽  
Wei Huang ◽  
Huiyuan Xu ◽  
Liwen Ma ◽  
...  

The stability analysis of damaged landslides and unstable debris is important for rescue work and emergency operations. This paper investigates a predisposed geological emergence, inducing the factors and deformation processes of the Zhongbao landslide, which happened on July 25, 2020. The stability of the landslide debris was evaluated by an integrated monitoring system consisting of ground-based radar, unmanned aerial vehicles, airborne Lidar, thermal infrared temperature monitoring, GNSS displacement monitoring, deep displacement monitoring, and rainfall monitoring. The strata and weak layer controlled the landslide failure, and topography defined the boundary of the failed rock mass. A continually intensive rainfall caused the deformation and accelerated failure of the landslide. The shallow and steep deposit (Part I) firstly slid at a high velocity, and then pushed the rear part of the landslide (Part II) to deform, forming numerous cracks, which accelerated the rainfall infiltrating into the rock mass. The moisture content increase could decrease the strength of the shale rock within the bedding planes. Finally, with the rock and soil mass sliding along the weak layer, a barrier dam and a barrier lake were formed. The monitoring and numerical simulation results showed that after the landslide failure, there was still local collapse and deformation occurrences which threatened rescue work and barrier lake excavation, and the stability of the accumulation area gradually decreased as the rainfall increased. Therefore, the barrier dam was not excavated until the accumulation rate gradually stabilized on July 28. Moreover, most of the reactivated deposits still accumulated in the transportation and source areas. Thus, in August, the displacement of the landslide debris gradually accelerated in a stepwise manner, and responded strongly to rainfall, especially in the accumulation area, so that it was inferred that the damaged landslide could slide again and cause a more threatening and severe failure. The analysis results of the study area can provide references for the failure mechanism of a rainfall-induced landslide and the stability evaluation of a damaged landslide.


2021 ◽  
Author(s):  
Arunava Ray ◽  
Harshal Verma ◽  
Ashutosh Kumar Bharati ◽  
Rajesh Rai ◽  
Radhakanta Koner ◽  
...  

2021 ◽  
Vol 288 ◽  
pp. 106154
Author(s):  
Dongri Song ◽  
Gordon G.D. Zhou ◽  
Xiao Qing Chen ◽  
Jie Li ◽  
Anli Wang ◽  
...  

2021 ◽  
Vol 10 (6) ◽  
pp. 363
Author(s):  
Xiang Han ◽  
Yunhe Yin ◽  
Yuming Wu ◽  
Shaohong Wu

Earthquakes often cause secondary disasters in mountainous areas, forming the typical earthquake-landslide-debris flow disaster chain for a long time that results in a series of losses. It is important to improve the risk assessment method from the perspective of cascading effect of such a disaster chain, by strengthening quantitative research on hazards of the debris flows which are affected by landslide volume and rainstorm intensity. Taking Wenchuan County as an example, the risk assessment method for population loss of the disaster chain is established and the risks are evaluated in this paper. The results show that the population loss risk is 2.59–2.71 people/km2 under the scenarios of the Wenchuan Ms8.0 earthquake and four rainstorm intensities. The impacts of landslide and debris flow after the earthquake were long-term and profound. A comparison of risks caused by each element of the chain revealed that the risk associated with the earthquake accounted for the highest proportion, and landslide and debris flow accounted for 38.82–37.18% and 3.42–7.50%, respectively. As the earthquake intensity increases, the total risk posed by the disaster chain increases significantly. The risk caused by the earthquake is the highest in high earthquake intensity zones; while in the lower-intensity zones, landslides and debris flows pose relatively high risks. The risk assessment results were verified through comparison with actual data, indicating that the simulation results are quite consistent with the existing disaster information and that the risk assessment method based on the earthquake-landslide-debris flow cascade process is significant for future risk estimation.


2021 ◽  
Author(s):  
Xiang Han ◽  
Yunhe Yin ◽  
Shaohong Wu

<p>Earthquake-geological disaster chain is one of the common forms of multi-disasters. Primary disaster and secondary disaster are cascaded, which often leads to the expansion of disaster losses. Since the ms8.0 earthquake in 2008, Wenchuan has continued to have landslides and debris flow disasters, which leads to the possibility of forming an earthquake-landslide-debris flow disaster chain, and the risk of population mortality. This study analyzes the key links in the formation of the earthquake-landslide-debris flow disaster chain in Wenchuan. Then according to the disaster chain assessment method, considering the impact of key factors in the disaster cascade effect, a factor model for the disaster chain is established. And mortality risks of the regional disaster chain under earthquake and heavy rainfall scenarios are quantified. The mortality risks of the earthquake-landslide-debris flow disaster chain  are 2.82 people/km<sup>2</sup>, 2.90 people/km<sup>2</sup>, 2.92 people/km<sup>2</sup>, and 2.95 people/km<sup>2</sup> with the precipitation probability of 20%, 5%, 2% and 1% . The risk for earthquake accounts for 50.98%~51.54%, the landslide accounts for 33.90%~34.28%, and the debris flow accounts for 14.19~15.12% in Wenchuan. At the township level, the total mortality risks of Yinxing, Yingxiu, and Gengda are at a relatively high level in this region. These results could provide a basis for further investigating and quantifying the risk reduction measurements of earthquake-landslide-debris flow disaster chain based on which effective disaster prevention and control measures can be undertaken.</p>


2020 ◽  
Vol 44 (4) ◽  
pp. 20190290
Author(s):  
Hao-Jie Li ◽  
Hong-Hu Zhu ◽  
Yuan-Hai Li ◽  
Wei Hu ◽  
Bin Shi

2020 ◽  
Author(s):  
Brenda Rosser ◽  
Katie Jones ◽  
Chris Massey ◽  
Salman Ashraf ◽  
Georgia Strawbridge ◽  
...  

<p>The 2016 M<sub>w</sub> 7.8 Kaikoura Earthquake in Canterbury, New Zealand produced one of the most complex fault ruptures observed in the historical period and produced strong ground shaking. As a consequence, over twenty-nine thousand landslides were triggered over a total area of about 10,000 km<sup>2</sup> with the majority concentrated in a smaller area of about 3,600 km<sup>2</sup> (Massey et al 2018). In addition, hillslopes in the affected area were severely damaged by tension cracking and dilation. Large volumes of landslide debris generated during the earthquake remain stored in the landscape and the potential for rainfall to trigger landslides on the failed and partially failed hillslopes is anticipated to be elevated for the foreseeable future. Despite this little is known about the increase in landslide hazard and the timeframe over which this hazard will be elevated.</p><p>We used airborne LiDAR captured immediately after the earthquake (November 2016), and at six consecutive dates between November 2017 and April 2019  to develop high resolution surface change models to construct an inventory of rainfall-induced landslides and reactivated landslides following the earthquake. The results were compared with landslide inventories for a series of significant storm events between 1880 and 2019 which were compiled from various sources, including mapping from available aerial photography and satellite imagery collected between 1961 and 2019.</p><p>Analysis of the landslide inventories indicates that rainfall triggering thresholds for landslides on these highly cracked and dilated slopes is lower than before the earthquake which has resulted in a significant increase in landslide frequency for a given rainfall amount through the initiation of new landslides on weakened slopes, reactivation of existing landslides and reworking of landslide debris stored on the landscape. Most of the landslides triggered by rainfall following the earthquake were highly mobile debris flows that were strongly coupled to the channel network. Preliminary results suggest that the highest rates of post-earthquake landslide initiation (for both new and reactivated landslides) occurred in the first major storm event following the earthquake and the rate has reduced with time since the earthquake. Maximum landslide size (area) also decreased with time following the earthquake. Quantification of rates of post-EQ rainfall-induced landsliding using LiDAR differencing and aerial photo interpretation will further our understanding of post-earthquake landscape recovery.</p>


Sign in / Sign up

Export Citation Format

Share Document