insulin fibrils
Recently Published Documents


TOTAL DOCUMENTS

44
(FIVE YEARS 7)

H-INDEX

18
(FIVE YEARS 2)

Author(s):  
Hui Wang ◽  
Ang Li ◽  
Menglin Yang ◽  
Yu Zhao ◽  
Linqi Shi ◽  
...  

2021 ◽  
pp. 193229682110338
Author(s):  
Brianne E. Lewis ◽  
Adam Mulka ◽  
Li Mao ◽  
Roshanak Sharafieh ◽  
Yi Qiao ◽  
...  

Background: Effective exogenous insulin delivery is the cornerstone of insulin dependent diabetes mellitus management. Recent literature indicates that commercial insulin-induced tissue reaction and cellular cytotoxicity may contribute to variability in blood glucose as well as permanent loss of injection or infusion site architecture and function. It is well accepted that insulin formulations are susceptible to mechanical and chemical stresses that lead to insulin fibril formation. This study aims to characterize in vitro and in vivo toxicity, as well as pro-inflammatory activity of insulin fibrils. Method: In vitro cell culture evaluated cytotoxicity and fibril uptake by macrophages and our modified murine air-pouch model quantified inflammatory activity. The latter employed FLOW cytometry and histopathology to characterize fibril-induced inflammation in vivo, which included fibril uptake by inflammatory phagocytes. Results: These studies demonstrated that insulin derived fibrils are cytotoxic to cells in vitro. Furthermore, inflammation is induced in the murine air-pouch model in vivo and in response, macrophages uptake fibrils both in vitro and in vivo. Conclusions: Administration of insulin fibrils can lead to cytotoxicity in macrophages. In vivo data demonstrate insulin fibrils to be pro-inflammatory which over time can lead to cumulative cell/tissue toxicity, inflammation, and destructive wound healing. Long term, these tissue reactions could contribute to loss of insulin injection site architecture and function.


Molecules ◽  
2020 ◽  
Vol 25 (6) ◽  
pp. 1380 ◽  
Author(s):  
Hoon Suk Rho ◽  
Henk-Willem Veltkamp ◽  
Alexander Thomas Hanke ◽  
Marcel Ottens ◽  
Christian Breukers ◽  
...  

A microfluidic protein aggregation device (microPAD) that allows the user to perform a series of protein incubations with various concentrations of two reagents is demonstrated. The microfluidic device consists of 64 incubation chambers to perform individual incubations of the protein at 64 specific conditions. Parallel processes of metering reagents, stepwise concentration gradient generation, and mixing are achieved simultaneously by pneumatic valves. Fibrillation of bovine insulin was selected to test the device. The effect of insulin and sodium chloride (NaCl) concentration on the formation of fibrillar structures was studied by observing the growth rate of partially folded protein, using the fluorescent marker Thioflavin-T. Moreover, dual gradients of different NaCl and hydrochloric acid (HCl) concentrations were formed, to investigate their interactive roles in the formation of insulin fibrils and spherulites. The chip-system provides a bird’s eye view on protein aggregation, including an overview of the factors that affect the process and their interactions. This microfluidic platform is potentially useful for rapid analysis of the fibrillation of proteins associated with many misfolding-based diseases, such as quantitative and qualitative studies on amyloid growth.


2020 ◽  
Vol 11 (1) ◽  
pp. 765-774
Author(s):  
Sandhya A ◽  
Gomathi Kanayiram ◽  
Kiruthika L ◽  
Aafreen Afroz S

The high order structure from proteins which are self-assembled are known as fibrils. They are collectively called as amyloid fibrils, which generally lead to neurodegenerative diseases like Alzheimer's, Parkinson's, Huntington's, Type II diabetes. Insulin fibril aggregation is identified to be the major cause of neurodegenerative diseases. The effect of Nigella sativa extract is analyzed based on the fibril inhibition process. The formed fibrils is reduced with the concentration increase of Nigella sativa extract. Insulin fibril is found in Type II diabetes patients after repeated insulin injections subcutaneously. Insulin fibrils are formed in organisms or humans irrespective of their places like hips, shoulder, hands and abdomen. These are evident from the anti-aggregation assay. Thioflavin T (ThT) fluroscence and congo red (CR) assay confirms the inhibition of insulin fibril in the presence of Nigella sativa (NS) extract. Further, inhibition of fibril was confirmed by Scanning Electron Microscope (SEM), where no insulin fibrils was detected whose secondary conformational changes are studied using Fourier Transform Infrared spectroscopy (FT-IR). It is confirmed that insulin fibril inhibition depends on the various concentration of Nigella sativa. Based on the results obtained, it is demonstrated that Nigella sativa extract inhibits the fibril formation and it also provides a therapeutic strategy to prevent insulin fibril formation.


The three-step Förster resonance energy transfer (FRET) within the cascade of four dyes, including the classical amyloid marker Thioflavin T as a primary donor, two jumper dyes, benzanthrone ABM and squaraine SQ4, and terminal acceptor SQ1, was tested as a possible tool for detection and characterization of insulin amyloid fibrils. The results obtained confirm the occurrence of highly efficient multistep FRET (msFRET) in the chromophore ensemble in the presence of insulin fibrils formed at elevated temperature under pH 2 (InsF1) or pH 7.4, 0.15 M NaCl (InsF2), while negligible FRET efficiencies were obtained for the control unfibrillized protein, suggesting the specificity of msFRET to cross-β-sheet architecture characteristic of amyloid fibrils. Specifically, the efficiencies of FRET for the donor-acceptor pairs ThT-ABM, ABM-SQ4 and SQ4-SQ1 at maximum acceptor concentrations (~0.4 µM – 1.6 µM) were estimated to be 86%/94%, 48%/34% and 66%/32%, respectively, in the presence of InsF1/InsF2. The most significant differences between InsF1/InsF2 and the control protein were observed for the donor-acceptor pair ThT-ABM, suggesting that ABM is the key mediator in the whole process of msFRET. Assuming the isotropic rotation of the fluorophores, the average donor-acceptor distances were estimated in the presence of InsF1, yielding the values 1.3 nm, 5.3 nm, and 3.9 nm for the ThT-ABM, ABM-SQ4 and SQ4-SQ1 pairs, respectively. The obtained distances are indicative of different fibril binding sites for the chromophores in the insulin fibrils, although due to their high specificity to the fibrillar structure, the dyes are most likely to localize in the surface grooves of β-sheets running along the main axis of amyloid fibril. Remarkably, the differences in the insulin amyloid morphology can be clearly distinguished using msFRET. As evidenced from TEM, InsF2 were thinner, shorter and contained amorphous aggregates, as compared to InsF1. Thus, different amyloid formation pathways under neutral and acidic pH resulted in the changes in the dye affinity for to the fibril binding sites, and, as a consequence, in the distinct msFRET efficiencies, especially for the pair SQ4-SQ1. The ability of ThT to serve as an efficient amplifier for the two near-infrared dyes, SQ4 and SQ1, with the benzanthrone fluorophore ABM as a jumper dye, allows detection of fibrillar insulin in the optical window of the biological samples, with the Stokes shift of the four-chromophore being ca. 240 nm. The proposed msFRET-based approach can be employed not only for insulin amyloid detection but also for distinguishing between different amyloid fibril morphologies and gaining further insights into the mechanisms involved in the development of the injection-localized insulin amyloidosis.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Mantas Ziaunys ◽  
Kamile Mikalauskaite ◽  
Vytautas Smirnovas

AbstractProtein aggregation into insoluble fibrillar aggregates is linked to several neurodegenerative disorders, such as Alzheimer’s or Parkinson’s disease. Commonly used methods to study aggregation inhibition or fibril destabilization by potential drugs include spectroscopic measurements of amyloidophilic dye molecule fluorescence or absorbance changes. In this work we show the cross-interactions of five different dye molecules on the surface of insulin amyloid fibrils, resulting in cooperative binding and fluorescence quenching.


2019 ◽  
Vol 84 (1) ◽  
pp. 47-55 ◽  
Author(s):  
A. K. Surin ◽  
S. Yu. Grishin ◽  
O. V. Galzitskaya
Keyword(s):  

2018 ◽  
Vol 201 ◽  
pp. 31-37
Author(s):  
P. Hanczyc ◽  
A. Justyniarski ◽  
J. Kim ◽  
A. Mikhailovsky ◽  
M. Ivanova

Sign in / Sign up

Export Citation Format

Share Document