scholarly journals The Striking Flower-in-Flower Phenotype of Arabidopsis thaliana Nossen (No-0) is Caused by a Novel LEAFY Allele

Plants ◽  
2019 ◽  
Vol 8 (12) ◽  
pp. 599 ◽  
Author(s):  
Anne Mohrholz ◽  
Hequan Sun ◽  
Nina Glöckner ◽  
Sabine Hummel ◽  
Üner Kolukisaoglu ◽  
...  

The transition to reproduction is a crucial step in the life cycle of any organism. In Arabidopsis thaliana the establishment of reproductive growth can be divided into two phases: Firstly, cauline leaves with axillary meristems are formed and internode elongation begins. Secondly, lateral meristems develop into flowers with defined organs. Floral shoots are usually determinate and suppress the development of lateral shoots. Here, we describe a transposon insertion mutant in the Nossen accession with defects in floral development and growth. Most strikingly is the outgrowth of stems from the axillary bracts of the primary flower carrying secondary flowers. Therefore, we named this mutant flower-in-flower (fif). However, the transposon insertion in the annotated gene is not the cause for the fif phenotype. By means of classical and genome sequencing-based mapping, the mutation responsible for the fif phenotype was found to be in the LEAFY gene. The mutation, a G-to-A exchange in the second exon of LEAFY, creates a novel lfy allele and results in a cysteine-to-tyrosine exchange in the α1-helix of LEAFY’s DNA-binding domain. This exchange abolishes target DNA-binding, whereas subcellular localization and homomerization are not affected. To explain the strong fif phenotype against these molecular findings, several hypotheses are discussed.

Author(s):  
Anne Mohrholz ◽  
Hequan Sun ◽  
Nina Glöckner ◽  
Sabine Hummel ◽  
Üner Kolukisaoglu ◽  
...  

The transition to reproduction is a crucial step in the life cycle of any organism. In Arabidopsis thaliana the establishment of reproductive growth can be divided into two phases: Firstly, cauline leaves with axillary meristems are formed and internode elongation begins. Secondly, lateral meristems develop into flowers with defined organs. Floral shoots are usually determinate and suppress the development of lateral shoots. Here, we describe a transposon insertion mutant in the Nossen accession with defects in floral development and growth. Most strikingly is the outgrowth of stems from the axillary bracts of the primary flower carrying secondary flowers. Therefore, we named this mutant flower-in-flower (fif). However, the transposon insertion in the annotated gene is not the cause for the fif phenotype. By means of classical and genome sequencing-based mapping, the mutation responsible for the fif phenotype was found to be in the LEAFY gene. The mutation, a G-to-A exchange in the second exon of LEAFY, creates a novel lfy allele and results in a cysteine-to-tyrosine exchange in the α1-helix of LEAFY´s DNA-binding domain. This exchange abolishes target DNA-binding, whereas subcellular localization and homomerization are not affected. To explain the strong fif phenotype against this molecular findings, several hypotheses are discussed.


2019 ◽  
Author(s):  
Anne Mohrholz ◽  
Hequan Sun ◽  
Nina Glöckner ◽  
Sabine Hummel ◽  
Üner Kolukisaoglu ◽  
...  

SummaryThe transition to reproduction is a crucial step in the life cycle of any organism. In Arabidopsis thaliana the establishment of reproductive growth can be divided into two phases: In the first phase, cauline leaves with axillary meristems are formed and internode elongation begins. In the second phase, lateral meristems develop into flowers with defined organs. Floral shoots are usually determinate and suppress the development of lateral shoots. Here, we describe a Ds transposon insertion mutant in the Nossen (No-0) accession with severe defects in floral development and flower morphology. The most striking aspect is the outgrowth of stems from the axillary bracts of the primary flower carrying terminal secondary flowers. Therefore, we named this mutant flower-in-flower (fif). However, the insertion of the transposon in the annotated gene is not responsible for the fif phenotype. By means of classical and genome sequencing-based mapping, the mutation responsible for the fif phenotype was found to be in the LEAFY (LFY) gene. The mutation, a G-to-A exchange in the second exon of LFY, creates a novel lfy allele and causes a cysteine-to-tyrosine exchange in the α1-helix of the LFY DNA-binding domain. Whereas subcellular localization and homomerization are not affected, the DNA-binding of LFYFIF is abolished. We propose that the amino acid exchange interferes with the cooperative binding of LFY to its target DNA. To generate the strong fif phenotype, LFYFIF may act dominant-negatively by either forming non-binding LFY/LFYFIF heteromers or by titrating out the interaction partners, required for LFY function as transcription factor.Significant Statement:The fif phenotype of Arabidopsis thaliana No-0 is caused by a novel allele of the LEAFY gene


2007 ◽  
Vol 17 (1) ◽  
pp. 68-72 ◽  
Author(s):  
Saori Tsujita ◽  
Mikimasa Tanada ◽  
Tomonobu Kataoka ◽  
Shigeki Sasaki

2021 ◽  
Author(s):  
Bijoya Paul ◽  
Loic Chaubet ◽  
Emma Verver ◽  
Guillermo Montoya

Cas12a is an RNA-guided endonuclease that is emerging as a powerful genome-editing tool. Here we combined optical tweezers with fluorescence to monitor Cas12a binding onto λ-DNA, providing insight into its DNA binding and cleavage mechanisms. At low forces Cas12a binds DNA specifically with two off-target sites, while at higher forces numerous binding events appear driven by the mechanical distortion of the DNA and partial matches to the crRNA. Despite the multiple binding events, cleavage is only observed on the target site at low forces, when the DNA is flexible. Activity assays show that the preferential off-target sites are not cleaved, and the λ-DNA is severed at the target site. This precision is also observed in Cas12a variants where the specific dsDNA and the unspecific ssDNA cleavage are dissociated or nick the target DNA. We propose that Cas12a and its variants are precise endonucleases that efficiently scan the DNA for its target but only cleave the selected site in the λ-DNA.


2012 ◽  
Vol 39 (12) ◽  
pp. 1058 ◽  
Author(s):  
Susan Jones-Held ◽  
Luciana Pimenta Ambrozevicius ◽  
Michael Campbell ◽  
Bradley Drumheller ◽  
Emily Harrington ◽  
...  

In Arabidopsis thalinana (L.) Heynh., DHDPS1 and DHDPS2 encode orthologous dihydrodipicolinate synthases (DHDPS), the first enzyme of the lysine (Lys) biosynthesis pathway. A TDNA insertion mutant of dhdps2 was previously reported to be viable and to accumulate free threonine (Thr). Analysis of additional TDNA insertion lines showed that dhdps1 and dhdps2 mutants are both viable and that whereas dhdps2 mutants accumulate Thr, dhdps1 plants do not. Thr-accumulation was complemented by heterologous expression of Escherichia coli DapA, indicating that the phenotype is due to reduced DHDPS activity in dhdps2. DHDPS1 contributes ~30% towards the total DHDPS activity in leaves of young plants and DHDPS2 contributes 70%; therefore, the threshold of activity resulting in Thr accumulation lies within this narrow range. dhdps1–dhdps2 double mutants could not be isolated, even after exogenous feeding with Lys. Segregation analysis indicated that gametes lacking functional DHDPS genes are defective, as are embryos. Plants carrying only a single DHDPS2 gene do not accumulate Thr, but they show a gametophytic defect that is partially rescued by Lys application. Despite the accumulation of Thr, dhdps2 seedlings are no more sensitive than wild-type plants to growth inhibition by Lys or the Lys precursor diaminopimelate. They also are not rescued by methionine at growth-inhibitory Lys concentrations. Exogenous application of Lys and methionine to dhdps2 mutants did not reduce the accumulation of Thr.


1989 ◽  
Vol 89 (3) ◽  
pp. 743-752 ◽  
Author(s):  
Thierry Alliotte ◽  
Christine Tiré ◽  
Gilbert Engler ◽  
Johan Peleman ◽  
Allan Caplan ◽  
...  

2004 ◽  
Vol 72 (3) ◽  
pp. 1383-1390 ◽  
Author(s):  
Arne Rietsch ◽  
Matthew C. Wolfgang ◽  
John J. Mekalanos

ABSTRACT The type III secretion system is a dedicated machinery used by many pathogens to deliver toxins directly into the cytoplasm of a target cell. Expression and secretion of the type III effectors are triggered by cell contact. In Pseudomonas aeruginosa and Yersinia spp., expression can be triggered in vitro by removing calcium from the medium. The mechanism underlying either mode of regulation is unclear. Here we characterize a transposon insertion mutant of P. aeruginosa PAO1 that displays a marked defect in cytotoxicity. The insertion is located upstream of several genes involved in histidine utilization and impedes the ability of PAO1 to intoxicate eukaryotic cells effectively in a type III-dependent fashion. This inhibition depends on the presence of histidine in the medium and appears to depend on the excessive uptake and catabolism of histidine. The defect in cytotoxicity is mirrored by a decrease in exoS expression. Other parameters such as growth or piliation are unaffected. The cytotoxicity defect is partially complemented by an insertion mutation in cbrA that also causes overexpression of cbrB. The cbrAB two-component system has been implicated in sensing and responding to a carbon-nitrogen imbalance. Taken together, these results suggest that the metabolic state of the cell influences expression of the type III regulon.


Sign in / Sign up

Export Citation Format

Share Document