scholarly journals Taxonomically and Functionally Distinct Ciliophora Assemblages Inhabiting Baltic Sea Ice

2021 ◽  
Author(s):  
Markus Majaneva ◽  
Janne-Markus Rintala ◽  
Jaanika Blomster

AbstractCiliophora is a phylum of unicellular eukaryotes that are common and have pivotal roles in aquatic environments. Sea ice is a marine habitat, which is composed of a matrix of solid ice and pockets of saline water in which Ciliophora thrive. Here, we used phylogenetic placement to identify Ciliophora 18S ribosomal RNA reads obtained from wintertime water and sea ice, and assigned functions to the reads based on this taxonomic information. Based on our results, sea-ice Ciliophora assemblages are poorer in taxonomic and functional richness than under-ice water and water-column assemblages. Ciliophora diversity stayed stable throughout the ice-covered season both in sea ice and in water, although the assemblages changed during the course of our sampling. Under-ice water and the water column were distinctly predominated by planktonic orders Choreotrichida and Oligotrichida, which led to significantly lower taxonomic and functional evenness in water than in sea ice. In addition to planktonic Ciliophora, assemblages in sea ice included a set of moderately abundant surface-oriented species. Omnivory (feeding on bacteria and unicellular eukaryotes) was the most common feeding type but was not as predominant in sea ice as in water. Sea ice included cytotrophic (feeding on unicellular eukaryotes), bacterivorous and parasitic Ciliophora in addition to the predominant omnivorous Ciliophora. Potentially mixotrophic Ciliophora predominated the water column and heterotrophic Ciliophora sea ice. Our results highlight sea ice as an environment that creates a set of variable habitats, which may be threatened by the diminishing extent of sea ice due to changing climate.

Polar Biology ◽  
2021 ◽  
Author(s):  
Carmen L. David ◽  
Fokje L. Schaafsma ◽  
Jan A. van Franeker ◽  
Evgeny A. Pakhomov ◽  
Brian P. V. Hunt ◽  
...  

AbstractSurvival of larval Antarctic krill (Euphausia superba) during winter is largely dependent upon the presence of sea ice as it provides an important source of food and shelter. We hypothesized that sea ice provides additional benefits because it hosts fewer competitors and provides reduced predation risk for krill larvae than the water column. To test our hypothesis, zooplankton were sampled in the Weddell-Scotia Confluence Zone at the ice-water interface (0–2 m) and in the water column (0–500 m) during August–October 2013. Grazing by mesozooplankton, expressed as a percentage of the phytoplankton standing stock, was higher in the water column (1.97 ± 1.84%) than at the ice-water interface (0.08 ± 0.09%), due to a high abundance of pelagic copepods. Predation risk by carnivorous macrozooplankton, expressed as a percentage of the mesozooplankton standing stock, was significantly lower at the ice-water interface (0.83 ± 0.57%; main predators amphipods, siphonophores and ctenophores) than in the water column (4.72 ± 5.85%; main predators chaetognaths and medusae). These results emphasize the important role of sea ice as a suitable winter habitat for larval krill with fewer competitors and lower predation risk. These benefits should be taken into account when considering the response of Antarctic krill to projected declines in sea ice. Whether reduced sea-ice algal production may be compensated for by increased water column production remains unclear, but the shelter provided by sea ice would be significantly reduced or disappear, thus increasing the predation risk on krill larvae.


2002 ◽  
Vol 48 (161) ◽  
pp. 177-191 ◽  
Author(s):  
Jean-Louis Tison ◽  
Christian Haas ◽  
Marcia M. Gowing ◽  
Suzanne Sleewaegen ◽  
Alain Bernard

AbstractDuring an ice-tank experiment, samples were taken to study the processes of acquisition and alteration of the gas properties in young first-year sea ice during a complete growth–warming–cooling cycle. The goal was to obtain reference levels for total gas content and concentrations of atmospheric gases (O2, N2, CO2) in the absence of significant biological activity. The range of total gas-content values obtained (3.5–18 mL STP kg−1) was similar to previous measurements or estimates. However, major differences occurred between current and quiet basins, showing the role of the water dynamics at the ice–water interface in controlling bubble nucleation processes. Extremely high CO2concentrations were observed in all the experiments (up to 57% in volume parts). It is argued that these could have resulted from two unexpected biases in the experimental settings. Concentrations in bubbles nucleated at the interface are controlled by diffusion both from the ice–water interface towards the well-mixed reservoir and between the interface water and the bubble itself. This double kinetic effect results in a transition of the gas composition in the bubbles from values close to solubility in sea water toward values close to atmospheric, as the ice cover builds up.


2018 ◽  
Vol 142 ◽  
pp. 94-106 ◽  
Author(s):  
Montserrat Roca-Martí ◽  
Viena Puigcorbé ◽  
Jana Friedrich ◽  
Michiel Rutgers van der Loeff ◽  
Benjamin Rabe ◽  
...  

2017 ◽  
Vol 14 (12) ◽  
pp. 3129-3155 ◽  
Author(s):  
Hakase Hayashida ◽  
Nadja Steiner ◽  
Adam Monahan ◽  
Virginie Galindo ◽  
Martine Lizotte ◽  
...  

Abstract. Sea ice represents an additional oceanic source of the climatically active gas dimethyl sulfide (DMS) for the Arctic atmosphere. To what extent this source contributes to the dynamics of summertime Arctic clouds is, however, not known due to scarcity of field measurements. In this study, we developed a coupled sea ice–ocean ecosystem–sulfur cycle model to investigate the potential impact of bottom-ice DMS and its precursor dimethylsulfoniopropionate (DMSP) on the oceanic production and emissions of DMS in the Arctic. The results of the 1-D model simulation were compared with field data collected during May and June of 2010 in Resolute Passage. Our results reproduced the accumulation of DMS and DMSP in the bottom ice during the development of an ice algal bloom. The release of these sulfur species took place predominantly during the earlier phase of the melt period, resulting in an increase of DMS and DMSP in the underlying water column prior to the onset of an under-ice phytoplankton bloom. Production and removal rates of processes considered in the model are analyzed to identify the processes dominating the budgets of DMS and DMSP both in the bottom ice and the underlying water column. When openings in the ice were taken into account, the simulated sea–air DMS flux during the melt period was dominated by episodic spikes of up to 8.1 µmol m−2 d−1. Further model simulations were conducted to assess the effects of the incorporation of sea-ice biogeochemistry on DMS production and emissions, as well as the sensitivity of our results to changes of uncertain model parameters of the sea-ice sulfur cycle. The results highlight the importance of taking into account both the sea-ice sulfur cycle and ecosystem in the flux estimates of oceanic DMS near the ice margins and identify key uncertainties in processes and rates that should be better constrained by new observations.


2014 ◽  
Vol 8 (3) ◽  
pp. 1019-1029 ◽  
Author(s):  
J. Zhou ◽  
J.-L. Tison ◽  
G. Carnat ◽  
N.-X. Geilfus ◽  
B. Delille

Abstract. We report on methane (CH4) dynamics in landfast sea ice, brine and under-ice seawater at Barrow in 2009. The CH4 concentrations in under-ice water ranged from 25.9 to 116.4 nmol L−1sw, indicating a supersaturation of 700 to 3100% relative to the atmosphere. In comparison, the CH4 concentrations in sea ice ranged from 3.4 to 17.2 nmol L−1ice and the deduced CH4 concentrations in brine from 13.2 to 677.7 nmol L−1brine. We investigated the processes underlying the difference in CH4 concentrations between sea ice, brine and under-ice water and suggest that biological controls on the storage of CH4 in ice were minor in comparison to the physical controls. Two physical processes regulated the storage of CH4 in our landfast ice samples: bubble formation within the ice and sea ice permeability. Gas bubble formation due to brine concentration and solubility decrease favoured the accumulation of CH4 in the ice at the beginning of ice growth. CH4 retention in sea ice was then twice as efficient as that of salt; this also explains the overall higher CH4 concentrations in brine than in the under-ice water. As sea ice thickened, gas bubble formation became less efficient, CH4 was then mainly trapped in the dissolved state. The increase of sea ice permeability during ice melt marked the end of CH4 storage.


2016 ◽  
Author(s):  
A. Bigdeli ◽  
B. Loose ◽  
S. T. Cole

Abstract. In ice-covered regions it can be challenging to determine air-sea exchange – for heat and momentum, but also for gases like carbon dioxide and methane. The harsh environment and relative data scarcity make it difficult to characterize even the physical properties of the ocean surface. Here, we seek a mechanistic interpretation for the rate of air-sea gas exchange (k) derived from radon-deficits. These require an estimate of the water column history extending 30 days prior to sampling. We used coarse resolution (36 km) regional configuration of the MITgcm with fine near surface vertical spacing (2 m) to evaluate the capability of the model to reproduce conditions prior to sampling. The model is used to estimate sea-ice velocity, concentration and mixed-layer depth experienced by the water column. We then compared the model results to existing field data including satellite, moorings and Ice-tethered profilers. We found that model-derived sea-ice coverage is 88 to 98 % accurate averaged over Beaufort Gyre, sea-ice velocities have 78 % correlation which resulted in 2 km/day error in 30 day trajectory of sea-ice. The model demonstrated the capacity to capture the broad trends in the mixed layer although with a bias and model water velocities showed only 29 % correlation with actual data. Overall, we find the course resolution model to be an inadequate surrogate for sparse data, however the simulation results are a slight improvement over several of the simplifying assumptions that are often made when surface ocean geochemistry, including the use of a constant mixed layer depth and a velocity profile that is purely wind-driven.


2003 ◽  
Vol 15 (3) ◽  
pp. 353-364 ◽  
Author(s):  
C. RIAUX-GOBIN ◽  
M. POULIN ◽  
R. PRODON ◽  
P. TREGUER

Annual land-fast ice, particularly an unconsolidated layer or “platelet ice-like” layer (PLI), was sampled in spring 1995 to study the spatial and short-term variations of ice-associated diatoms. Under-ice water, a lead and small polynyas were also sampled. Along a 7 km seaward transect a geographical gradient was evident, with some rare diatom species present only in the offshore PLI, whereas others (mainly pennate diatoms) were ubiquitous. The dense microphytic PLI community as well as the phytoplankton was diatom-dominated, but, within these two communities, marked differences appeared. First, the sea-ice communities (PLI and solid bottom ice) were moderately diverse (36 species), mostly composed of pennate diatoms, of which many were chain forming or tube-dwelling. Dominant taxa were Navicula glaciei, Berkeleya adeliensis, Nitzschia stellata, Amphiprora kufferathii and Nitzschia lecointei. Some differences in the distribution of the most dominant species appeared within the bottom ice and the PLI, attesting to differences in the origin or/and growing capability of these diatoms in these two ice compartments. Under-ice water species composition was mixed with sea-ice communities only on the most coastal sites and during ice melt. Maximum cell numbers were mostly noticed in the PLI, reaching up to 1010 cells l−1 and very high Chl a concentrations (exceptionally up to 9.8 mg Chl a l−1 or 1.9 g Chl a m−2, from a 10 to 20 cm thick PLI layer, close to the continent). Secondly, the phytoplankton in the lead and small polynyas had a low diversity, very low standing stocks (on an average 0.69 μg Chl a l−1) and cell densities (2 × 104 cells l−1). Some species from the polynyas were similar to those of the PLI, such as Navicula glaciei, but others were typically planktonic, such as Chaetoceros cf. neglectus. The presence of encysted cells (Chaetoceros and Chrysophytes) was also noticeable in the polynya water. In early spring no seeding process was obvious from the PLI to polynya water. A comparison with similar fast-ice diatom communities in other parts of coastal Antarctica, is presented.


2018 ◽  
Vol 8 (12) ◽  
pp. 2693 ◽  
Author(s):  
Philippe Massicotte ◽  
Guislain Bécu ◽  
Simon Lambert-Girard ◽  
Edouard Leymarie ◽  
Marcel Babin

The vertical diffuse attenuation coefficient for downward plane irradiance ( K d ) is an apparent optical property commonly used in primary production models to propagate incident solar radiation in the water column. In open water, estimating K d is relatively straightforward when a vertical profile of measurements of downward irradiance, E d , is available. In the Arctic, the ice pack is characterized by a complex mosaic composed of sea ice with snow, ridges, melt ponds, and leads. Due to the resulting spatially heterogeneous light field in the top meters of the water column, it is difficult to measure at single-point locations meaningful K d values that allow predicting average irradiance at any depth. The main objective of this work is to propose a new method to estimate average irradiance over large spatially heterogeneous area as it would be seen by drifting phytoplankton. Using both in situ data and 3D Monte Carlo numerical simulations of radiative transfer, we show that (1) the large-area average vertical profile of downward irradiance, E d ¯ ( z ) , under heterogeneous sea ice cover can be represented by a single-term exponential function and (2) the vertical attenuation coefficient for upward radiance ( K L u ), which is up to two times less influenced by a heterogeneous incident light field than K d in the vicinity of a melt pond, can be used as a proxy to estimate E d ¯ ( z ) in the water column.


2018 ◽  
Author(s):  
Anna Makarewicz ◽  
Piotr Kowalczuk ◽  
Sławomir Sagan ◽  
Mats A. Granskog ◽  
Alexey K. Pavlov ◽  
...  

Abstract. Optical properties of Chromophoric (CDOM) and Fluorescent Dissolved Organic Matter (FDOM) were characterized in the Nordic Seas including the West Spitsbergen Shelf during June–July of 2013, 2014 and 2015. The CDOM absorption coefficient at 350 nm, aCDOM(350) showed significant interannual variation. In 2013, the highest average aCDOM(350) values (aCDOM = 0.30 ± 0.12 m−1) were observed due to the influence of cold and low–saline water from the Sørkapp Current in the southern part of West Spitsbergen Shelf. In 2014, aCDOM(350) values were significantly lower than in 2013 (av. aCDOM(350) = 0.14 ± 0.06 m−1), which was associated with the dominance of warm and saline Atlantic Water (AW) in the region, while in 2015 intermediate CDOM absorption (av. aCDOM(350) = 0.19 ± 0.05 m−1) was observed. In situ measurement of three FDOM components revealed that protein–like FDOM dominated and concentration of marine and terrestrial humic–like DOM were very low and its distribution were generally vertically homogenous in the upper ocean (0–100 m). Fluorescence of terrestrial and marine humic–like FDOM decreased in surface waters (0–15 m) near the sea–ice edge by dilution of oceanic waters by sea–ice melt water. The vertical distribution of protein–like FDOM was characterized by a prominent sub–surface maximum that matched the subsurface chlorophyll a maximum and was observed all across the study area. The highest protein–like FDOM fluorescence was observed in the Norwegian Sea in the core of warm AW. There was a significant relationship between the protein–like fluorescence and chlorophyll a fluorescence (R2 = 0.65, p 


Sign in / Sign up

Export Citation Format

Share Document