scholarly journals Understanding the Rayleigh instability in humping phenomenon during laser powder bed fusion process

Author(s):  
Wenxuan Zhang ◽  
Wenyuan Hou ◽  
Luc Deike ◽  
Craig Arnold

Abstract The periodic undulation of a molten track's height profile in laser-based powder bed fusion of metals (PBF-LB/M) is a commonly observed phenomena that can cause defects and building failure during the manufacturing process. However a quantitative analysis of such instabilities has not been fully established and so here we used Rayleigh-Plateau theory to determine the stability of a single molten track in PBF-LB/M and tested it with various processing conditions by changing laser power and beam shape. The analysis discovered that normalized enthalpy, which relates to energy input density, determines whether a molten track is initially unstable and if so, the growth rate for the instability. Additionally, whether the growth rate ultimately yields significant undulation depends on the melt duration, estimated by dwell time in our experiment.

Materials ◽  
2020 ◽  
Vol 13 (3) ◽  
pp. 538 ◽  
Author(s):  
Fabrizia Caiazzo ◽  
Vittorio Alfieri ◽  
Giuseppe Casalino

Laser powder bed fusion (LPBF) can fabricate products with tailored mechanical and surface properties. In fact, surface texture, roughness, pore size, the resulting fractional density, and microhardness highly depend on the processing conditions, which are very difficult to deal with. Therefore, this paper aims at investigating the relevance of the volumetric energy density (VED) that is a concise index of some governing factors with a potential operational use. This paper proves the fact that the observed experimental variation in the surface roughness, number and size of pores, the fractional density, and Vickers hardness can be explained in terms of VED that can help the investigator in dealing with several process parameters at once.


Materialia ◽  
2021 ◽  
Vol 15 ◽  
pp. 100976
Author(s):  
Akash Sonawane ◽  
Guilhem Roux ◽  
Jean-Jacques Blandin ◽  
Arthur Despres ◽  
Guilhem Martin

Metals ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 1070
Author(s):  
Bharat Mehta ◽  
Eduard Hryha ◽  
Lars Nyborg ◽  
Frederic Tholence ◽  
Erik Johansson

This study evaluates the effect of post-manufacturing treatment on the compressive performance of additively manufactured components. The components were thin cylindrical shells with an aspect ratio of 25:1 manufactured using laser powder bed fusion and that were then surface treated by means of sandblasting or turning. The as-printed and subsequently surface treated samples were uniaxially compressed until failure to depict the effect of the surface condition on the compressive mechanical behavior. The results show that as the surfaces became smoother via sandblasting, the average peak strength for buckling load improves negligibly (0.85%), whereas this effect reaches 6.5% upon surface layer removal via turning. Through microstructural investigation and co-relating this with an understanding of processing conditions existing in manufacturing itself, this effect is seen to be linked to contour scanning causing softening of the surface region in a component.


2020 ◽  
Vol 106 (7-8) ◽  
pp. 3367-3379 ◽  
Author(s):  
Shahriar Imani Shahabad ◽  
Zhidong Zhang ◽  
Ali Keshavarzkermani ◽  
Usman Ali ◽  
Yahya Mahmoodkhani ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document