oceanic sediment
Recently Published Documents


TOTAL DOCUMENTS

21
(FIVE YEARS 7)

H-INDEX

7
(FIVE YEARS 1)

2021 ◽  
Author(s):  
Vidusanka Thilakanayaka ◽  
Luo Chuanxiu* ◽  
Rong Xiang

<p>Silicon is important as a nutrient for phytoplankton (diatom, radiolarian, silicoflagellates and sponges) and for the phytolith production by terrestrial vegetation. Silicon also contributes in removing carbon dioxide from the atmosphere through silicate weathering.  Hence it is important to understand the behavior of the silicon cycle throughout earth history. Silica is the second most abundant element in the earth's crust and the concentration of silicic acid in the marine environment has not changed since the past 10,000 years. Phytolith plays an important role in the silicon cycle. While the phytoplankton in marine environment bioengineers silica within the water column, phytolith transports terrestrial biogenic silica into the marine environment and act as a silicon sink. Though astonishingly, very few researches have been carried out in the field of marine phytolith sink and also on the phytoliths in the marine environment.</p><p>For this study, we have chosen the world highest terrestrial sediment receiving submarine fan, the Bengal fan. The core sample was extracted at a water depth of 3520m at 85.960985 N, 9.99351 E. 24 phytolith types were identified and all the morphotypes were counted dividing into three size classes. These size classes were specific to considering morphotypes. Most related simple geometries were used to calculate the volume of phytolith cells and these volume data were used in calculating the total volume of phytolith in one gram of sediment by combining with an absolute abundance of phytolith data for each size class, which were later used to calculate the total weight of phytolith in one gram of marine sediment. According to the results in deep oceanic sediment at the core, the location contains ⁓0.15mg/g phytolith during the low phytolith flux periods (ex. Late Holocene) and ⁓2.678mg/g of phytolith during the high phytolith flux periods such as 25ka to 30ka B.P. and around the beginning of deglaciation. After removing 10% from the total weight as phytolith occluded carbon (PhytOC), phytolith derived biogenic silica content in sediment varies from ⁓0.135mg/g - ⁓2.41mg/g. Thus, phytolith in marine sediment contributes as a permanent silicon and carbon sink. By considering average marine sediment density as 1.7g/cm<sup>3</sup>, in a 1cm thick, one square km sediment layer contains ⁓2 to 40 metric tons of biogenic silica derived from phytolith, during low and high phytolith flux periods. This study serves as the pioneer of this field of study and further it is important to investigate the release of biogenic silica in to marine environment by phytolith and PhytOC content in different morphotypes and in different geological regions, for better understanding the contribution of phytolith to the biogenic silicon cycle in the marine environment.</p><p>Keywords: Marine phytolith, Deep oceanic sediment, Silicon cycle, Phytolith Flux, Silicon sink.</p><p><strong>Acknowledgements</strong></p><p>This work was funded by the National Natural Science Foundation of China (NSFC 41876062) and Key Special Project for Introduced Talents Team of Southern Marine Science and EngineeringGuangdong Laboratory (Guangzhou) (GML2019ZD0206).</p><p> </p>


Science ◽  
2021 ◽  
Vol 371 (6530) ◽  
pp. 731-735
Author(s):  
Václav M. Kuna ◽  
John L. Nábělek

Fin whale calls are among the strongest animal vocalizations that are detectable over great distances in the oceans. We analyze fin whale songs recorded at ocean-bottom seismometers in the northeast Pacific Ocean and show that in addition to the waterborne signal, the song recordings also contain signals reflected and refracted from crustal interfaces beneath the stations. With these data, we constrain the thickness and seismic velocity of the oceanic sediment and basaltic basement and the P-wave velocity of the gabbroic lower crust beneath and around the ocean bottom seismic stations. The abundant and globally available fin whale calls may be used to complement seismic studies in situations where conventional air-gun surveys are not available.


2020 ◽  
Vol 157 (8) ◽  
pp. 1281-1298
Author(s):  
Hang Li ◽  
Ming Wang ◽  
Xiao-Wen Zeng ◽  
An-Bo Luo ◽  
Yun-Peng Yu ◽  
...  

AbstractThe study of the petrogenesis of some magmatic rocks with special geochemical attributes provides effective information for us to explore the deep geodynamic background of their formation. A series of granitic porphyry dykes have been found in the mélange zone of the Asa region in southern Tibet, whose genesis may be closely related to the evolution of the Meso-Tethyan Ocean. Regional geodynamic evolution is investigated by whole-rock geochemical analysis, zircon U–Pb dating and Lu–Hf isotopic analysis of two porphyritic granites. The Asa porphyritic granites have high SiO2 (74.29–78.65 wt %) and alkalis (Na2O + K2O = 6.51–9.35 wt %) contents, and low Al2O3 (11.60–14.51 wt %), CaO (0.04–0.19 wt MgO (0.01–0.10 wt %) contents. They are enriched in Zr, Nb, Ce, Y and Hf and depleted in Ti, Ba, Sr and P, consistent with A-type granites. The samples are relatively rich in LREEs, with LREE/HREE ratios of 1.73–3.04. They display negative Eu anomalies (Eu/Eu* = 0.24–0.28) and obvious Ce anomalies in some samples. Zircon U–Pb analyses show that the porphyritic granites formed in late Early Cretaceous time, 107.4 to 105.5 Ma. Zircon εHf(t) values are in the range of 6.9 to 12.0. These data indicate that the porphyritic granites were sourced from interaction between mantle-derived and juvenile lower crust-derived melts, with the addition of oceanic sediment-derived melts. This occurred when the subducting Bangong–Nujiang oceanic crust split to create a slab window. Rising asthenosphere triggered re-melting of lower crust basalts, resulting in the formation of the late Early Cretaceous A-type granites around Asa.


2019 ◽  
Vol 7 (1) ◽  
pp. 224-232 ◽  
Author(s):  
Eiji Ohtani

Abstract Geophysical observations suggest that the transition zone is wet locally. Continental and oceanic sediment components together with the basaltic and peridotitic components might be transported and accumulated in the transition zone. Low-velocity anomalies at the upper mantle–transition zone boundary might be caused by the existence of dense hydrous magmas. Water can be carried farther into the lower mantle by the slabs. The anomalous Q and shear wave regions locating at the uppermost part of the lower mantle could be caused by the existence of fluid or wet magmas in this region because of the water-solubility contrast between the minerals in the transition zone and those in the lower mantle. δ-H solid solution AlO2H–MgSiO4H2 carries water into the lower mantle. Hydrogen-bond symmetrization exists in high-pressure hydrous phases and thus they are stable at the high pressures of the lower mantle. Thus, the δ-H solid solution in subducting slabs carries water farther into the bottom of the lower mantle. Pyrite FeO2Hx is formed due to a reaction between the core and hydrated slabs. This phase could be a candidate for the anomalous regions at the core–mantle boundary.


2019 ◽  
Vol 245 ◽  
pp. 525-541 ◽  
Author(s):  
P. Agrinier ◽  
C. Destrigneville ◽  
T. Giunta ◽  
M. Bonifacie ◽  
G. Bardoux ◽  
...  

2012 ◽  
Vol 49 (7) ◽  
pp. 819-856 ◽  
Author(s):  
Marjorie J. Johns ◽  
Julie A. Trotter ◽  
Christopher R. Barnes ◽  
Y. Roshni Narayan

Significant advancements in understanding the complex evolution of the Tofino Basin at a convergent accretionary margin are enabled by combining contextual geologic information with new isotopic and paleontological data. A high-resolution Cenozoic chronostratigraphy of the basin is constrained by strontium isotope ages (36.9–1.3 Ma) of Late Eocene to Pleistocene foraminifers together with a revised biostratigraphy (foraminifers and ichthyoliths) from six offshore wells and outcrop samples, new specimen thermal alteration values, and existing well log data. These data are integrated with archival multichannel seismic and magnetic data to interpret offshore well positions with relation to sub-basins and structural highs of the Pacific Rim and Crescent terranes, and other accreted strata. Six regions of the Tofino Basin are defined based on structure and depositional differences during the Eocene to Holocene history of accretion and fragmentation of the Crescent terrane and it underthrusting the Pacific Rim terrane. Subsequent oceanic sediment accretions and deposition of overlying sediments up to about 4000 m thick resulted as the Juan de Fuca plate subducted beneath Vancouver Island. Observations include different fragmentations and landward movements of the Crescent and Pacific Rim terranes in the regions and two fault styles in the Ucluelet and Carmanah regions where six new sub-basins are defined. Results, especially for the Ucluelet and Carmanah sub-basins, indicate periods of deformation during the Late Eocene, Late Oligocene, Middle–Late Miocene, and post middle Pliocene, whereas the Early Oligocene and Early Miocene had periods of relatively slow and less disturbed deposition.


Sign in / Sign up

Export Citation Format

Share Document