kinematic simulations
Recently Published Documents


TOTAL DOCUMENTS

30
(FIVE YEARS 7)

H-INDEX

9
(FIVE YEARS 1)

Author(s):  
Thomas Overbergh ◽  
Pieter Severijns ◽  
Erica Beaucage-Gauvreau ◽  
Thijs Ackermans ◽  
Lieven Moke ◽  
...  

Image-based subject-specific models and simulations are recently being introduced to complement current state-of-the-art mostly static insights of the adult spinal deformity (ASD) pathology and improve the often poor surgical outcomes. Although the accuracy of a recently developed subject-specific modeling and simulation framework has already been quantified, its reliability to perform marker-driven kinematic analyses has not yet been investigated. The aim of this work was to evaluate the reliability of this subject-specific framework to measure spine kinematics in ASD patients, in terms of 1) the overall test-retest repeatability; 2) the inter-operator agreement of spine kinematic estimates; and, 3) the uncertainty of those spine kinematics to operator-dependent parameters of the framework. To evaluate the overall repeatability 1], four ASD subjects and one control subject participated in a test-retest study with a 2-week interval. At both time instances, subject-specific spino-pelvic models were created by one operator to simulate a recorded forward trunk flexion motion. Next, to evaluate inter-operator agreement 2], three trained operators each created a model for three ASD subjects to simulate the same forward trunk flexion motion. Intraclass correlation coefficients (ICC’s) of the range of motion (ROM) of conventional spino-pelvic parameters [lumbar lordosis (LL), sagittal vertical axis (SVA), thoracic kyphosis (TK), pelvic tilt (PT), T1-and T9-spino-pelvic inclination (T1/T9-SPI)] were used to evaluate kinematic reliability 1] and inter-operator agreement 2]. Lastly, a Monte-Carlo probabilistic simulation was used to evaluate the uncertainty of the intervertebral joint kinematics to operator variability in the framework, for three ASD subjects 3]. LL, SVA, and T1/T9-SPI had an excellent test-retest reliability for the ROM, while TK and PT did not. Inter-operator agreement was excellent, with ICC values higher than test-retest reliability. These results indicate that operator-induced uncertainty has a limited impact on kinematic simulations of spine flexion, while test-retest reliability has a much higher variability. The definition of the intervertebral joints in the framework was identified as the most sensitive operator-dependent parameter. Nevertheless, intervertebral joint estimations had small mean 90% confidence intervals (1.04°–1.75°). This work will contribute to understanding the limitations of kinematic simulations in ASD patients, thus leading to a better evaluation of future hypotheses.


2020 ◽  
Vol 22 (1) ◽  
pp. 93-104
Author(s):  
V. Chitti Babu ◽  
P. Govinda Rao ◽  
K. Santa Rao ◽  
B. Murali Krishna

AbstractThis article focuses on the synthesis of a steering mechanism that exactly meets the requirements of steering geometry. It starts from reviewing the four-bar linkage, then discusses the number of points that a common four-bar linkage could precisely trace at most. After pointing out the limits of a four-bar steering mechanism, this article investigates the turning geometry for steering wheels and proposes a steering mechanism using servo motors and ARDUINO board. The pitch curves, addendum curves, dedendum curves, tooth pro les and transition curves of the noncircular gears are formulated and designed. Finally, kinematic simulations are executed to demonstrate the target of design


Author(s):  
Carl A. Nelson

Abstract In this paper, we present a method for fabricating inexpensive, disposable, articulated instruments for minimally invasive surgery based on Japanese paper arts. Building on the literature covering the kinematics of origami, we introduce an articulated instrument design with antagonistic tendon actuation. A general method for achieving a fixed motion scaling ratio in these types of systems is also presented. Kinematic simulations and prototyping demonstrate feasibility of this concept.


Author(s):  
John Lowery ◽  
Carl A. Nelson

Abstract This paper outlines the design of a reconfigurable, partially disposable, tendon-driven robotic arm for providing assistance in laparoscopic surgery. The rationale for its development and design objectives are provided, followed by a description of its mechanical design. Kinematic simulations to assess workspace are presented, and a first-stage assessment of the functionality of a prototype using a custom test bench is also included.


2020 ◽  
Vol 21 (4) ◽  
pp. 403
Author(s):  
Terence Essomba ◽  
Sinh Nguyen Phu

In the most severe cases of longitudinal bone fractures such as femur, tibias, humerus etc., the bone can be completely separated into two fragments. In order to guarantee the re-ossification of the bone, it is required to reposition the bone fragments together. This process requires a delicate surgery called “bone reduction surgery”. The most advanced technique relies on the use of a robotic manipulator to reposition the bone fragments with higher precision and stability than manual surgeries. The present work introduces the kinematic design of a new hybrid mechanical architecture to perform this task. It is composed of a 3-PRP planar mechanism attached with a 3-RPS tripod mechanism. The kinematic analysis of this mechanism is provided while taking account the tripod parasitic motion. Kinematic simulations using Matlab and Adams are performed to validate the kinematic and velocity models and the parasitic motion compensation provided by the planar mechanism. The workspace of this hybrid mechanism is then compared to the standard hexapod mechanism that is widely used in bone reduction surgery. It reveals that the proposed mechanism can generate a larger workspace with the same linkage dimensions.


Author(s):  
Kaz Vermeer ◽  
Reinier Kuppens ◽  
Justus Herder

The presented research demonstrates the synthesis of two-dimensional kinematic mechanisms using feature-based reinforcement learning. As a running example the classic challenge of designing a straight-line mechanism is adopted: a mechanism capable of tracing a straight line as part of its trajectory. This paper presents a basic framework, consisting of elements such as mechanism representations, kinematic simulations and learning algorithms, as well as some of the resulting mechanisms and a comparison to prior art. Series of successful mechanisms have been synthesized for path generation of a straight line and figure-eight.


Sign in / Sign up

Export Citation Format

Share Document