baroclinic torque
Recently Published Documents


TOTAL DOCUMENTS

25
(FIVE YEARS 4)

H-INDEX

7
(FIVE YEARS 1)

Author(s):  
Afaque M. Hossain ◽  
Martin Ehrhardt ◽  
Martin Rudolph ◽  
Dmitry V Kalanov ◽  
Pierre Lorenz ◽  
...  

Abstract Recently, plasma produced by focusing femtosecond laser in gases has been introduced as an etching tool in materials processing. Proper control of the plasma in this application necessitates the apt understanding of the different morphological features of the plasma. In this contribution we show that, the plasma produced in air goes through several stages of morphological development – from ellipsoidal to spherical to toroidal plasma, whereas in argon, axial compression of an ellipsoidal plasma is observed. To explain this dissimilarity, we have quantified the temperature by emission spectroscopy (Planck analysis with Wien’s approximation). The evolution of temperature shows a triple exponential dependence in time which can be correlated with different stages of morphological changes of the plasma. Open Source Field Operation and Manipulation (OpenFOAM) simulations using experimentally determined temperature values show that – (i) the reverse pressure gradient propagates radially inwards and compresses the plasma in both air and argon and forms a localized high pressure zone at the center that generates a secondary pressure wave in air, but not in argon, and (ii) the baroclinic torque that is generated because of the Richtmyer-Meshkov instability, dominates the rate of vorticity in air, whereas effects of flow compressibility and velocity gradients dominate the vortices in argon. Knowledge of the initial state and the dynamics of the subsequent stages of the plasma formation can be utilized for control and optimization of laser-induced plasma applications.


2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Chengzao Han ◽  
Yun Long ◽  
Xiaorui Bai ◽  
Bin Ji

In the current study, the turbulent cavitation flow around a marine propeller in a nonuniform wake is simulated with the shear stress transport (k−ω SST) turbulence model combining Zwart–Gerber–Belamri (ZGB) cavitation model. The predicted cavity evolution shows a fairly well agreement with the available experimental results. Important mechanisms of propeller cavitation flow, including side-entrant jet and cavitation-vortex interaction, are analyzed in this paper. Vorticity is found to be mainly located in cavitation regions and the propeller wake during propeller rotating. The unsteady behavior of cavitation and side-entrant jet can both promote local vorticity generation and flow unsteadiness. In addition, it is indicated with the relative vorticity transport equation that the stretching term plays a major role in vorticity transportation, while baroclinic torque and Coriolis force term mainly influence the vorticity distribution along the liquid-vapor interface.


2020 ◽  
pp. 2150032
Author(s):  
Shuwei Zhang ◽  
Hongxun Chen ◽  
Zheng Ma

Unsteady cavitating turbulent flow around a NACA66 hydrofoil was simulated using a mass transfer cavitation model and a modified filter-based turbulence model in this paper. The modified filter-based turbulence model can accurately predict the pressure coefficient in midplane and shedding frequency of the unsteady cloud cavitation than standard [Formula: see text]–[Formula: see text] model and filter-based turbulence model. The time evolution of transient cavitation cloud structure predicted by the three-turbulence model was compared. The result which was predicted by the modified filter-based turbulence model is in good agreement with the experimental results. The time evolution of re-entrant jet had been analyzed. The instantaneous wall-pressure evolution on the suction surface (SS) predicted by the modified filter-based turbulence model had been analyzed. The cavitation-vortex interaction had been analyzed in this study. The different effects on the cavitation-vortex interaction of the vortex stretching term, vortex dilatation term and baroclinic torque term in the transport equation of vorticity had been discussed.


2019 ◽  
Vol 876 ◽  
pp. 715-732 ◽  
Author(s):  
Askar Kazbekov ◽  
Keishi Kumashiro ◽  
Adam M. Steinberg

The contributions of vortex stretching, dilatation, baroclinic torque and viscous diffusion to Reynolds-averaged enstrophy transport in turbulent swirl flames were experimentally measured using tomographic particle image velocimetry and $\text{CH}_{2}\text{O}$ planar laser induced fluorescence at jet Reynolds numbers of 26 000–51 000. The mean baroclinic torque was determined by subtracting the other terms in the enstrophy transport equation from the mean Lagrangian derivative. Enstrophy production from baroclinic torque was found to be significant relative to the other transport terms across all conditions studies. This result contrasts with direct numerical simulations of flames in homogeneous isotropic turbulence, which show a decreasing relative significance of baroclinic torque with increasing turbulence intensity (e.g. Bobbitt, Lapointe & Blanquart, Phys. Fluids, vol. 28 (1), 2016, 015101). Hence, the significance of baroclinic enstrophy production in flames is not determined entirely by the local turbulence and flame properties, but also depends on the configuration-specific pressure field.


2018 ◽  
Vol 38 (2) ◽  
pp. 527-543 ◽  
Author(s):  
Cong Wang ◽  
Yongxue Zhang ◽  
Zhiwei Li ◽  
Ao Xu ◽  
Chang Xu ◽  
...  

To provide a comprehensive understanding of the pressure fluctuation–vortex interaction in non-cavitation and cavitation flow, in this article, the unsteady flow in an ultra-low specific-speed centrifugal pump was investigated by numerical simulation. The uncertainty of the numerical framework with three sets of successively refined mesh was verified and validated by a level of 1% of the experimental results. Then, the unsteady results indicate that the features of the internal flow and the pressure fluctuation were accurately captured in accordance with the closed-loop experimental results. The detailed pressure fluctuation at 16 monitoring points and the monitoring of the vorticity suggest that some inconsistent transient phenomena in frequency spectrums show strong correlation with the evolution of vortex, such as abnormal increasing amplitudes at the monitoring points near to the leading edge on the suction surface and the trailing edge on the pressure surface in the case of lower pressurization capacity of impeller after cavitation. Further analysis applies the relative vortex transport equation to intuitionally illustrate the pressure fluctuation–vortex interaction by the contribution of baroclinic torque, viscous diffusion and vortex convection terms. It reveals that the effect of viscous diffusion is weak when the Reynolds number is much greater than 1. Pressure fluctuation amplitude enlarges on the suction side of blade near to the leading edge due to the baroclinic torque in cavitation regions, whereas the abnormal increase of pressure fluctuation after cavitation on the pressure surface of blade approaching the trailing edge results from the vortex convection during vortices moving downstream with the decrease of available net positive suction head at the same instance.


2018 ◽  
Vol 84 (3) ◽  
Author(s):  
Radostin D. Simitev ◽  
Friedrich H. Busse

Stellar radiative zones are typically assumed to be motionless in standard models of stellar structure but there is sound theoretical and observational evidence that this cannot be the case. We investigate by direct numerical simulations a three-dimensional and time-dependent model of stellar radiation zones consisting of an electrically conductive and stably stratified anelastic fluid confined to a rotating spherical shell and driven by a baroclinic torque. As the baroclinic driving is gradually increased a sequence of transitions from an axisymmetric and equatorially symmetric time-independent flow to flows with a strong poloidal component and lesser symmetry are found. It is shown that all flow regimes characterised by significant non-axisymmetric components are capable of generating a self-sustained magnetic field. As the value of the Prandtl number is decreased and the value of the Ekman number is decreased, flows become strongly time dependent with progressively complex spatial structure and dynamos can be generated at lower values of the magnetic Prandtl number.


Author(s):  
Xianwu Luo ◽  
An Yu ◽  
Bin Ji ◽  
Yulin Wu ◽  
Yoshinobu Tsujimoto

Hydro turbines operating at partial flow conditions usually have vortex ropes in the draft tube that generate large pressure fluctuations. This unsteady flow phenomenon is harmful to the safe operation of hydropower stations. This paper presents numerical simulations of the internal flow in the draft tube of a Francis turbine with particular emphasis on understanding the unsteady characteristics of the vortex rope structure and the underlying mechanisms for the interactions between the air and the vortices. The pressure fluctuations induced by the vortex rope are alleviated by air admission from the main shaft center, with the water-air two phase flow in the entire flow passage of a model turbine simulated based on the homogeneous flow assumption. The results show that aeration with suitable air flow rate can alleviate the pressure fluctuations in the draft tube, and the mechanism improving the flow stability in the draft tube is due to the change of vortex rope structure and distribution by aeration, i.e. a helical vortex rope at a small aeration volume while a cylindrical vortex rope with a large amount of aeration. The preferable vortex rope distribution can suppress the swirl at the smaller flow rates, and is helpful to alleviate the pressure fluctuation in the draft tube. The analysis based on the vorticity transport equation indicates that the vortex has strong stretching and dilation in the vortex rope evolution. The baroclinic torque term does not play a major role in the vortex evolution most of the time, but will much increase for some specific aeration volumes. The present study also depicts that vortex rope is mainly associated with a pair of spiral vortex stretching and dilation sources, and its swirling flow is alleviated little by the baroclinic torque term, whose effect region is only near the draft tube inlet.


2016 ◽  
Vol 812 ◽  
pp. 222-250 ◽  
Author(s):  
Dominik Krug ◽  
Daniel Chung ◽  
Jimmy Philip ◽  
Ivan Marusic

To date, the understanding of the role buoyancy plays in the entrainment process in unstable configurations such as turbulent plumes remains incomplete. Towards addressing this question, we set up a flow in which a plume evolves in time instead of space. We demonstrate that the temporal problem is equivalent to a spatial plume in a strong coflow and address in detail how the temporal plume can be realized via direct numerical simulation. Using numerical data of plume simulations up to $Re_{\unicode[STIX]{x1D706}}\approx 100$, we show that the entrainment coefficient can be determined consistently using a global entrainment analysis in an integral framework as well as via a local approach. The latter is based on a study of the local propagation of the turbulent/non-turbulent interface relative to the fluid. Locally, this process is dominated by small-scale diffusion which is amplified by interface convolutions such that the total entrained flux is independent of viscosity. Further, we identify a direct buoyancy contribution to entrainment by baroclinic torque, which accounts for 8 %–12 % of the entrained flux locally, comparable to the 15 % buoyancy contribution at the integral level. It appears that the baroclinic torque is a mechanism that might explain higher values of the entrainment coefficient in spatial plumes compared with jets.


Sign in / Sign up

Export Citation Format

Share Document