scholarly journals Multi-Source Hydrological Data Products to Monitor High Asian River Basins and Regional Water Security

2021 ◽  
Vol 13 (24) ◽  
pp. 5122
Author(s):  
Massimo Menenti ◽  
Xin Li ◽  
Li Jia ◽  
Kun Yang ◽  
Francesca Pellicciotti ◽  
...  

This project explored the integrated use of satellite, ground observations and hydrological distributed models to support water resources assessment and monitoring in High Mountain Asia (HMA). Hydrological data products were generated taking advantage of the synergies of European and Chinese data assets and space-borne observation systems. Energy-budget-based glacier mass balance and hydrological models driven by satellite observations were developed. These models can be applied to describe glacier-melt contribution to river flow. Satellite hydrological data products were used for forcing, calibration, validation and data assimilation in distributed river basin models. A pilot study was carried out on the Red River basin. Multiple hydrological data products were generated using the data collected by Chinese satellites. A new Evapo-Transpiration (ET) dataset from 2000 to 2018 was generated, including plant transpiration, soil evaporation, rainfall interception loss, snow/ice sublimation and open water evaporation. Higher resolution data were used to characterize glaciers and their response to environmental forcing. These studies focused on the Parlung Zangbo Basin, where glacier facies were mapped with GaoFeng (GF), Sentinal-2/Multi-Spectral Imager (S2/MSI) and Landsat8/Operational Land Imager (L8/OLI) data. The geodetic mass balance was estimated between 2000 and 2017 with Zi-Yuan (ZY)-3 Stereo Images and the SRTM DEM. Surface velocity was studied with Landsat5/Thematic Mapper (L5/TM), L8/OLI and S2/MSI data over the period 2013–2019. An updated method was developed to improve the retrieval of glacier albedo by correcting glacier reflectance for anisotropy, and a new dataset on glacier albedo was generated for the period 2001–2020. A detailed glacier energy and mass balance model was developed with the support of field experiments at the Parlung No. 4 Glacier and the 24 K Glacier, both in the Tibetan Plateau. Besides meteorological measurements, the field experiments included glaciological and hydrological measurements. The energy balance model was formulated in terms of enthalpy for easier treatment of water phase transitions. The model was applied to assess the spatial variability in glacier melt. In the Parlung No. 4 Glacier, the accumulated glacier melt was between 1.5 and 2.5 m w.e. in the accumulation zone and between 4.5 and 6.0 m w.e. in the ablation zone, reaching 6.5 m w.e. at the terminus. The seasonality in the glacier mass balance was observed by combining intensive field campaigns with continuous automatic observations. The linkage of the glacier and snowpack mass balance with water resources in a river basin was analyzed in the Chiese (Italy) and Heihe (China) basins by developing and applying integrated hydrological models using satellite retrievals in multiple ways. The model FEST-WEB was calibrated using retrievals of Land Surface Temperature (LST) to map soil hydrological properties. A watershed model was developed by coupling ecohydrological and socioeconomic systems. Integrated modeling is supported by an updated and parallelized data assimilation system. The latter exploits retrievals of brightness temperature (Advanced Microwave Scanning Radiometer, AMSR), LST (Moderate Resolution Imaging Spectroradiometer, MODIS), precipitation (Tropical Rainfall Measuring Mission (TRMM) and FengYun (FY)-2D) and in-situ measurements. In the case study on the Red River Basin, a new algorithm has been applied to disaggregate the SMOS (Soil Moisture and Ocean Salinity) soil moisture retrievals by making use of the correlation between evaporative fraction and soil moisture.

2017 ◽  
Vol 63 (240) ◽  
pp. 618-628 ◽  
Author(s):  
MARKUS ENGELHARDT ◽  
AL. RAMANATHAN ◽  
TRUDE EIDHAMMER ◽  
PANKAJ KUMAR ◽  
OSKAR LANDGREN ◽  
...  

ABSTRACTGlacier mass balance and runoff are simulated from 1955 to 2014 for the catchment (46% glacier cover) containing Chhota Shigri Glacier (Western Himalaya) using gridded data from three regional climate models: (1) the Rossby Centre regional atmospheric climate model v.4 (RCA4); (2) the REgional atmosphere MOdel (REMO); and (3) the Weather Research and Forecasting Model (WRF). The input data are downscaled to the simulation grid (300 m) and calibrated with point measurements of temperature and precipitation. Additional input is daily potential global radiation calculated using a DEM at a resolution of 30 m. The mass-balance model calculates daily snow accumulation, melt and runoff. The model parameters are calibrated with available mass-balance measurements and results are validated with geodetic measurements, other mass-balance model results and run-off measurements. Simulated annual mass balances slightly decreased from −0.3 m w.e. a−1 (1955–99) to −0.6 m w.e. a−1 for 2000–14. For the same periods, mean runoff increased from 2.0 m3 s−1 (1955–99) to 2.4 m3 s−1 (2000–14) with glacier melt contributing about one-third to the runoff. Monthly runoff increases are greatest in July, due to both increased snow and glacier melt, whereas slightly decreased snowmelt in August and September was more than compensated by increased glacier melt.


2011 ◽  
Vol 8 (3) ◽  
pp. 4979-5008 ◽  
Author(s):  
G. Jost ◽  
R. D. Moore ◽  
B. Menounos ◽  
R. Wheate

Abstract. Glacier melt provides important contributions to streamflow in many mountainous regions. Hydrologic model calibration in glacier-fed catchments is difficult because errors in modelling snow accumulation can be offset by compensating errors in glacier melt. This problem is particularly severe in catchments with modest glacier cover, where goodness-of-fit statistics such as the Nash-Sutcliffe model efficiency may not be highly sensitive to the streamflow variance associated with glacier melt. While glacier mass balance measurements can be used to aid model calibration, they are absent for most catchments. We introduce the use of glacier volume change determined from repeated glacier mapping in a guided GLUE (generalized likelihood uncertainty estimation) procedure to calibrate a hydrologic model. We also explicitly account for changes in glacier area through the calibration and test periods. The approach is applied to the Mica basin in the Canadian portion of the Columbia River basin using the HBV-EC hydrologic model. Use of glacier volume change in the calibration procedure effectively reduced parameter uncertainty and helped to ensure that the model was accurately predicting glacier mass balance as well as streamflow. The seasonal and interannual variations in glacier melt contributions were assessed by running the calibrated model with historic glacier cover and also after converting all glacierized areas to alpine land cover in the model setup. Although glaciers in the Mica basin only cover 5 % of the watershed, glacier ice melt contributes up to 25 % and 35 % of streamflow in August and September, respectively, and is particularly important during periods of warm, dry weather following winters with low accumulation and early snowpack depletion. The approach introduced in this study provides an effective and widely applicable approach for calibrating hydrologic models in glacier fed catchments, as well as for quantifying the magnitude and timing of glacier melt contributions to streamflow.


2021 ◽  
Vol 13 (9) ◽  
pp. 4926
Author(s):  
Nguyen Duc Luong ◽  
Nguyen Hoang Hiep ◽  
Thi Hieu Bui

The increasing serious droughts recently might have significant impacts on socioeconomic development in the Red River basin (RRB). This study applied the variable infiltration capacity (VIC) model to investigate spatio-temporal dynamics of soil moisture in the northeast, northwest, and Red River Delta (RRD) regions of the RRB part belongs to territory of Vietnam. The soil moisture dataset simulated for 10 years (2005–2014) was utilized to establish the soil moisture anomaly percentage index (SMAPI) for assessing intensity of agricultural drought. Soil moisture appeared to co-vary with precipitation, air temperature, evapotranspiration, and various features of land cover, topography, and soil type in three regions of the RRB. SMAPI analysis revealed that more areas in the northeast experienced severe droughts compared to those in other regions, especially in the dry season and transitional months. Meanwhile, the northwest mainly suffered from mild drought and a slightly wet condition during the dry season. Different from that, the RRD mainly had moderately to very wet conditions throughout the year. The areas of both agricultural and forested lands associated with severe drought in the dry season were larger than those in the wet season. Generally, VIC-based soil moisture approach offered a feasible solution for improving soil moisture and agricultural drought monitoring capabilities at the regional scale.


2016 ◽  
Vol 8 (4) ◽  
pp. 279 ◽  
Author(s):  
Gijs Simons ◽  
Wim Bastiaanssen ◽  
Le Ngô ◽  
Christopher Hain ◽  
Martha Anderson ◽  
...  

2016 ◽  
Vol 10 (3) ◽  
pp. 1089-1104 ◽  
Author(s):  
Kjetil S. Aas ◽  
Thorben Dunse ◽  
Emily Collier ◽  
Thomas V. Schuler ◽  
Terje K. Berntsen ◽  
...  

Abstract. In this study we simulate the climatic mass balance of Svalbard glaciers with a coupled atmosphere–glacier model with 3 km grid spacing, from September 2003 to September 2013. We find a mean specific net mass balance of −257 mm w.e. yr−1, corresponding to a mean annual mass loss of about 8.7 Gt, with large interannual variability. Our results are compared with a comprehensive set of mass balance, meteorological, and satellite measurements. Model temperature biases of 0.19 and −1.9 °C are found at two glacier automatic weather station sites. Simulated climatic mass balance is mostly within about 100 mm w.e. yr−1 of stake measurements, and simulated winter accumulation at the Austfonna ice cap shows mean absolute errors of 47 and 67 mm w.e. yr−1 when compared to radar-derived values for the selected years 2004 and 2006. Comparison of modeled surface height changes from 2003 to 2008, and satellite altimetry reveals good agreement in both mean values and regional differences. The largest deviations from observations are found for winter accumulation at Hansbreen (up to around 1000 mm w.e. yr−1), a site where sub-grid topography and wind redistribution of snow are important factors. Comparison with simulations using 9 km grid spacing reveal considerable differences on regional and local scales. In addition, 3 km grid spacing allows for a much more detailed comparison with observations than what is possible with 9 km grid spacing. Further decreasing the grid spacing to 1 km appears to be less significant, although in general precipitation amounts increase with resolution. Altogether, the model compares well with observations and offers possibilities for studying glacier climatic mass balance on Svalbard both historically as well as based on climate projections.


2020 ◽  
Vol 14 (6) ◽  
pp. 2005-2027 ◽  
Author(s):  
Álvaro Ayala ◽  
David Farías-Barahona ◽  
Matthias Huss ◽  
Francesca Pellicciotti ◽  
James McPhee ◽  
...  

Abstract. As glaciers adjust their size in response to climate variations, long-term changes in meltwater production can be expected, affecting the local availability of water resources. We investigate glacier runoff in the period 1955–2016 in the Maipo River basin (4843 km2, 33.0–34.3∘ S, 69.8–70.5∘ W), in the semiarid Andes of Chile. The basin contains more than 800 glaciers, which cover 378 km2 in total (inventoried in 2000). We model the mass balance and runoff contribution of 26 glaciers with the physically oriented and fully distributed TOPKAPI (Topographic Kinematic Approximation and Integration)-ETH glacio-hydrological model and extrapolate the results to the entire basin. TOPKAPI-ETH is run at a daily time step using several glaciological and meteorological datasets, and its results are evaluated against streamflow records, remotely sensed snow cover, and geodetic mass balances for the periods 1955–2000 and 2000–2013. Results show that in 1955–2016 glacier mass balance had a general decreasing trend as a basin average but also had differences between the main sub-catchments. Glacier volume decreased by one-fifth (from 18.6±4.5 to 14.9±2.9 km3). Runoff from the initially glacierized areas was 177±25 mm yr−1 (16±7 % of the total contributions to the basin), but it shows a decreasing sequence of maxima, which can be linked to the interplay between a decrease in precipitation since the 1980s and the reduction of ice melt. Glaciers in the Maipo River basin will continue retreating because they are not in equilibrium with the current climate. In a hypothetical constant climate scenario, glacier volume would reduce to 81±38 % of the year 2000 volume, and glacier runoff would be 78±30 % of the 1955–2016 average. This would considerably decrease the drought mitigation capacity of the basin.


2017 ◽  
Vol 53 (4) ◽  
pp. 3146-3178 ◽  
Author(s):  
Baohong Ding ◽  
Kun Yang ◽  
Wei Yang ◽  
Xiaobo He ◽  
Yingying Chen ◽  
...  

2009 ◽  
Vol 55 (190) ◽  
pp. 292-302 ◽  
Author(s):  
Thomas Mölg ◽  
Nicolas J. Cullen ◽  
Georg Kaser

AbstractBroadband radiation schemes (parameterizations) are commonly used tools in glacier mass-balance modelling, but their performance at high altitude in the tropics has not been evaluated in detail. Here we take advantage of a high-quality 2 year record of global radiation (G ) and incoming longwave radiation (L ↓) measured on Kersten Glacier, Kilimanjaro, East Africa, at 5873 m a.s.l., to optimize parameterizations of G and L ↓. We show that the two radiation terms can be related by an effective cloud-cover fraction neff , so G or L ↓ can be modelled based on neff derived from measured L ↓ or G, respectively. At neff = 1, G is reduced to 35% of clear-sky G, and L ↓ increases by 45–65% (depending on altitude) relative to clear-sky L ↓. Validation for a 1 year dataset of G and L ↓ obtained at 4850 m on Glaciar Artesonraju, Peruvian Andes, yields a satisfactory performance of the radiation scheme. Whether this performance is acceptable for mass-balance studies of tropical glaciers is explored by applying the data from Glaciar Artesonraju to a physically based mass-balance model, which requires, among others, G and L ↓ as forcing variables. Uncertainties in modelled mass balance introduced by the radiation parameterizations do not exceed those that can be caused by errors in the radiation measurements. Hence, this paper provides a tool for inclusion in spatially distributed mass-balance modelling of tropical glaciers and/or extension of radiation data when only G or L ↓ is measured.


2019 ◽  
Vol 65 (252) ◽  
pp. 605-616 ◽  
Author(s):  
SOJIRO SUNAKO ◽  
KOJI FUJITA ◽  
AKIKO SAKAI ◽  
RIJAN B. KAYASTHA

ABSTRACTWe conducted a mass-balance study of debris-free Trambau Glacier in the Rolwaling region, Nepal Himalaya, which is accessible to 6000 m a.s.l., to better understand mass-balance processes and the effect of precipitation on these processes on high-elevation Himalayan glaciers. Continuous in situ meteorological and mass-balance observations that spanned the three melt seasons from May 2016 are reported. An energy- and mass-balance model is also applied to evaluate its performance and sensitivity to various climatic conditions. Glacier-wide mass balances ranging from −0.34 ± 0.38 m w.e. in 2016 to −0.82 ± 0.53 m w.e. in 2017/18 are obtained by combining the observations with model results for the areas above the highest stake. The estimated long-term glacier mass balance, which is reconstructed using the ERA-Interim data calibrated with in situ data, is −0.65 ± 0.39 m w.e. a−1for the 1980–2018 period. A significant correlation with annual precipitation (r= 0.77,p< 0.001) is observed, whereas there is no discernible correlation with summer mean air temperature. The results indicate the continuous mass loss of Trambau Glacier over the last four decades, which contrasts with the neighbouring Mera Glacier in balance.


Water ◽  
2020 ◽  
Vol 12 (2) ◽  
pp. 582
Author(s):  
Min Xu ◽  
Haidong Han ◽  
Shichang Kang

The authors wish to make the following corrections to this paper [...]


Sign in / Sign up

Export Citation Format

Share Document