scholarly journals Impacts of Effects of Deficit Irrigation Strategy on Water Use Efficiency and Yield in Cotton under Different Irrigation Systems

Agronomy ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 231
Author(s):  
Hanan H. Shukr ◽  
Keith G. Pembleton ◽  
Andrew F. Zull ◽  
Geoff J. Cockfield

Irrigated cotton (Gossypium hirsutum L.) growers in the Murray-Darling Basin (MDB) of Australia, are challenged by limited water availability. This modelling-study aimed to determine if deficit irrigation (DI) practices can potentially improve water use efficiency (WUE) for furrow irrigation (FI), overhead sprinkler irrigation (OSI) and subsurface drip irrigation (SDI) systems. We validated the Agricultural Production System sIMulator (APSIM) against observed cotton lint yield and crop biomass accumulation for different management practices. The model achieved concordance correlation coefficients of 0.93 and 0.82 against observed cotton crop biomass accumulation and lint yields, respectively. The model was then applied to evaluate the impacts of different levels of DI on lint yield, WUE across cotton growing locations in the MDB (Goondiwindi, Moree, Narrabri, and Warren), during the period from 1977 to 2017. The different levels of DI for the FI system were no irrigation, full irrigation (TF) and irrigated one out of four, one out of three, one out of two, two out of three and two out of four TF events. For the OSI and SDI systems, DI levels were no irrigation, TF, 20% of TF, 40% of TF, 60% of TF and 80% of TF. Lint yield was maximised under the OSI and SDI systems for most locations by applying 80% of TF. However; modelling identified that WUE was maximised at 60% of full irrigation for OSI and SDI systems. These results suggest there are significant gains in agronomic performance to be gained through the application of DI practices with these systems. For FI, DI had no benefit in terms of increasing yield, while DI showed marginal gains in terms of WUE in some situations. This result is due to the greater exposure to periodic water deficit stress that occurred when DI practices were applied by an FI system. The results suggest that in the northern MDB, water savings could be realised for cotton production under both OSI and SDI systems if DI were adopted to a limited extent, depending on location and irrigation system.

2009 ◽  
Vol 101 (3) ◽  
pp. 460-468 ◽  
Author(s):  
R. L. Baumhardt ◽  
S. A. Staggenborg ◽  
P. H. Gowda ◽  
P. D. Colaizzi ◽  
T. A. Howell

ISRN Agronomy ◽  
2012 ◽  
Vol 2012 ◽  
pp. 1-8 ◽  
Author(s):  
K. Nagaz ◽  
M. M. Masmoudi ◽  
N. Ben Mechlia

A two-year study was conducted in arid region of Tunisia to evaluate the effects of deficit irrigation regimes with saline water on soil salinity, yield, and water use efficiency of onion grown in a commercial farm on a sandy soil and drip-irrigated with water having an of 3.6 dS/m. Irrigation treatments consisted in water replacements of accumulated at levels of 100% (SWB-100, full irrigation), 80% (DI-80), 60% (DI-60), when the readily available water in the control treatment (SWB-100) is depleted, deficit irrigation during ripening stage (SWB100-MDI60) and farmer method corresponding to irrigation practices implemented by the local farmers. Results on onion production and soil salinization are globally coherent between the two-year experiments and show significant difference between irrigation regimes. Higher soil salinity was maintained in the root zone with DI-60 and farmer treatments than full irrigation (SWB-100). SWB100-MDI60 and DI-80 treatments resulted also in low values. No significant differences were observed in bulbs fresh and dry yields, bulbs number·ha−1 and weight from the comparison between full irrigation (SWB-100) and deficit treatments (DI-80, SWB100-MDI60). DI-60 irrigation treatment caused significant reductions in the four parameters considered in comparison with SWB-100. The farmer method caused significant reductions in yield components and resulted in increase of water usage 45 and 33% in 2008 and 2009, respectively. Water use efficiency was found to vary significantly among treatments, where the highest and the lowest values were observed for DI-60 and farmer treatments, respectively. The full irrigation (SWB-100) and deficit irrigation (DI-80 and SWB100-MDI60) strategies were found to be a useful practice for scheduling onion irrigation with saline water under the arid Mediterranean conditions of southern Tunisia.


2016 ◽  
Vol 108 (4) ◽  
pp. 1614-1623 ◽  
Author(s):  
Ahmed Attia ◽  
Nithya Rajan ◽  
Shyam S. Nair ◽  
Paul B. DeLaune ◽  
Qingwu Xue ◽  
...  

2013 ◽  
Vol 864-867 ◽  
pp. 2009-2012 ◽  
Author(s):  
Ya Mei Wang ◽  
Heng Jia Zhang

An experiment was conducted to investigate the effect of regulated deficit irrigation (RDI) on yield and water use efficiency (WUE) of processing tomato in an arid climate. The results showed that crop yields of processing tomato were significantly (p<0.05) 11.0%~60.0% higher in the fully irrigated plots than RDI treatments except that subject to low level of RDI at seedling. When subject to RDI fruit number per plant, fruit weight, fruit longitudinal diameter and transverse diameter were the main components contributing to yield increase of processing tomato, while decayed fruit number was the key factor restraining tomato yield improvement. The WUE of processing tomato was significantly improved by 13.4% in RDI plants subject to low water deficit at seedling compared to full irrigation, but no difference (p>0.05) existed between fully irrigated crops and RDI plants subject to water deficit at seedling or late fruiting. However, in comparison with fully irrigated crops WUE was significantly reduced by 16.3%~23.3% in RDI plants subject to water deficits respectively at flowering and full fruiting as well as subject to high water deficit at late fruiting. Therefore, low level of RDI at seedling while full irrigation during flowering to late fruiting could be applied to effectively improve yield and WUE of processing tomato in arid areas.


Horticulturae ◽  
2020 ◽  
Vol 6 (3) ◽  
pp. 45 ◽  
Author(s):  
M. A. Badr ◽  
W. A. El-Tohamy ◽  
S. D. Abou-Hussein ◽  
N. S. Gruda

Crop production in arid regions requires continuous irrigation to fulfill water demand throughout the growing season. Agronomic measures, such as roots-soil microorganisms, including arbuscular mycorrhizal (AM) fungi, have emerged in recent years to overcome soil constraints and improve water use efficiency (WUE). Eggplant plants were exposed to varying water stress under inoculated (AM+) and non-inoculated (AM−) to evaluate yield performance along with plant physiological status. Plants grown under full irrigation resulted in the highest fruit yield, and there were significant reductions in total yield and yield components when applying less water. The decline in fruit yield was due to the reduction in the number of fruits rather than the weight of the fruit per plant. AM+ plants showed more favorable growth conditions, which translated into better crop yield, total dry biomass, and number of fruits under all irrigation treatments. The fruit yield did not differ between full irrigation and 80% evapotranspiration (ET) restoration with AM+, but a 20% reduction in irrigation water was achieved. Water use efficiency (WUE) was negatively affected by deficit irrigation, particularly at 40% ET, when the water deficit severely depressed fruit yield. Yield response factor (Ky) showed a lower tolerance with a value higher than 1, with a persistent drop in WUE suggesting a lower tolerance to water deficits. The (Ky) factor was relatively lower with AM+ than with AM− for the total fruit yield and dry biomass (Kss), indicating that AM may enhance the drought tolerance of the crop. Plants with AM+ had a higher uptake of N and P in shoots and fruits, higher stomatal conductance (gs), and higher photosynthetic rates (Pn), regardless of drought severity. Soil with AM+ had higher extractable N, P, and organic carbon (OC), indicating an improvement of the fertility status in coping with a limited water supply.


2009 ◽  
Vol 61 (4) ◽  
pp. 801-810 ◽  
Author(s):  
Sladjana Savic ◽  
F. Liu ◽  
Radmila Stikic ◽  
S.E. Jacobsen ◽  
C.R. Jensen ◽  
...  

The effects of partial rootzone drying (PRD), deficit irrigation (DI), and full irrigation (FI) on tomato physiology were investigated. In PRD and DI plants, leaf water potential values and stomatal conductance were significantly lower, while xylem ABA concentration was greater compared to FI plants. Photosynthesis was similar for all treatments. Water use efficiency was improved by PRD and DI, which reduced fruit dry weight, but had no effect on dry weight of leaves and stems.


2020 ◽  
Vol 41 (6) ◽  
pp. 2509-2522
Author(s):  
Marcelo Rocha dos Santos ◽  
◽  
Paulo Roberto Fernandes Cotrim Junior ◽  
Naasoom Luiz Santos Mesquita ◽  
Sérgio Luiz Rodrigues Donato ◽  
...  

The increasing water demand of crops in response to climate change; the prospect of expanded irrigated areas; the population growth; and competition with multiple uses of water affect the availability of water resources for agriculture. Thus, measures are required that involve the adoption of irrigation-management strategies able to increase water savings without compromising crop yield, especially in semi-arid conditions, where water resources are limited, and in large-scale commercial cultivation such as in 'Tommy Atkins' and 'Palmer' mango, the second most widely grown irrigated fruit crop. The objective of this study was to examine the influence of irrigation systems (drip and micro-sprinkler) and deficit-irrigation strategies on the yield and water use efficiency (WUE) of 'Tommy Atkins' and 'Palmer' mango trees. The study was developed through two experiments conducted in the Irrigated Perimeter of Ceraíma, located in municipality of Guanambi - BA, Brazil. Two trials were carried out in a completely randomized design. For the 'Tommy Atkins' cultivar, 12 strategies were tested, involving regulated deficit irrigation (RDI) by micro-sprinkler irrigation and partial rootzone drying (PRD) by drip, in three production cycles. For ‘Palmer’ mango, 10 irrigation strategies were evaluated under the same previously described conditions, in only one production cycle. The reduction in water application in RDI was 25 and 50% of the crop evapotranspiration (ETc); and, in PRD, 20, 40 and 60% ETc. ‘Tommy Atkins’ mango achieved higher yields under micro-sprinkler irrigation with full irrigation and in the strategies involving the application of 50 and 75% ETc in stages II and III. These two strategies also provided greater WUE, along with PRD40. Water use efficiency was lower in the third evaluation cycle when compared with the first. ‘Palmer’ mango showed higher yields and WUE under drip irrigation, with the best yields achieved with full irrigation and in the strategies of PRD100, 80%, 60% and RDI with 50% ETc in stage III. The best WUE was obtained in PRD with 60 and 40% ETc.


2018 ◽  
Vol 13 (32) ◽  
pp. 1621-1632 ◽  
Author(s):  
Pacheco de Souza Adilson ◽  
Carvalho da Silva Andrea ◽  
Aki Tanaka Adriana ◽  
Euzébio de Souza Manoel ◽  
Pizzatto Mariana ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document