sampling optimization
Recently Published Documents


TOTAL DOCUMENTS

92
(FIVE YEARS 29)

H-INDEX

12
(FIVE YEARS 2)

Insects ◽  
2022 ◽  
Vol 13 (1) ◽  
pp. 88
Author(s):  
Seth J. Dorman ◽  
Sally V. Taylor ◽  
Sean Malone ◽  
Phillip M. Roberts ◽  
Jeremy K. Greene ◽  
...  

Tarnished plant bug, Lygus lineolaris (Hemiptera: Miridae), is an economically damaging pest in cotton production systems across the southern United States. We systematically scouted 120 commercial cotton fields across five southeastern states during susceptible growth stages in 2019 and 2020 to investigate sampling optimization and the effect of interface crop and landscape composition on L. lineolaris abundance. Variance component analysis determined field and within-field spatial scales, compared with agricultural district and state, accounted for more variation in L. lineolaris density using sweep net and drop cloth sampling. This result highlights the importance of field-level scouting efforts. Using within-field samples, a fixed-precision sampling plan determined 8 and 23 sampling units were needed to determine L. lineolaris population estimates with 0.25 precision for sweep net (100 sweeps per unit) and drop cloth (1.5 row-m per unit) sampling, respectively. A spatial Bayesian hierarchical model was developed to determine local landscape (<0.5 km from field edges) effects on L. lineolaris in cotton. The proportion of agricultural area and double-crop wheat and soybeans were positively associated with L. lineolaris density, and fields with more contiguous cotton areas negatively predicted L. lineolaris populations. These results will improve L. lineolaris monitoring programs and treatment management decisions in southeastern USA cotton.


Foods ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 2681
Author(s):  
Dalma Radványi ◽  
Magdolna Szelényi ◽  
Attila Gere ◽  
Béla Péter Molnár

The determination of an optimal volatile sampling procedure is always a key question in analytical chemistry. In this paper, we introduce the application of a novel non-parametric statistical method, the sum of ranking differences (SRD), for the quick and efficient determination of optimal sampling procedures. Different types of adsorbents (Porapak Q, HayeSep Q, and Carbotrap) and sampling times (1, 2, 4, and 6 h) were used for volatile collections of lettuce (Lactuca sativa) samples. SRD identified 6 h samplings as the optimal procedure. However, 1 or 4 h sampling with HayeSep Q and 2 h sampling with Carbotrap are still efficient enough if the aim is to reduce sampling time. Based on our results, SRD provides a novel way to not only highlight an optimal sampling procedure but also decrease evaluation time.


2021 ◽  
Vol 13 (14) ◽  
pp. 2674
Author(s):  
Tingting Lv ◽  
Xiang Zhou ◽  
Zui Tao ◽  
Xiaoyu Sun ◽  
Jin Wang ◽  
...  

Remote sensing (RS)-derived vegetation indices (VIs) with medium and high spatial resolution have emerged as a promising dataset for fine-scale ecosystem modeling and agricultural monitoring at local or global scales. Before they can be used as reliable inputs for other research, conducting in situ measurements for validation is very critical. However, the spatial heterogeneity due to the diversity of land cover and its spatial organization in the landscape increases the uncertainty of validation, so design of optimal sampling is an important basis for the reliability of the validation. In this paper, we propose an integrative stratified sampling strategy (INTEG-STRAT) based on normalized difference vegetation index (NDVI) data as prior knowledge. The basic idea is to realize a sampling optimization by determining the optimal combination of the spatial sampling method (e.g., simple random sampling (SRS), spatial system sampling (SYS), stratified sampling, generalized random tessellation stratified (GRTS), balanced acceptance sampling (BAS)) and spatial stratification scheme with an objective rule. The objective rule in this paper is to minimize the root mean square error (RMSE) of 10-fold cross validation between estimated values (sample are not included) and the corresponding values on prior knowledge. Relative precision, correlation coefficient, and RMSE are used to compare the effectiveness of the proposed sampling strategy with each sampling method without considering sampling optimization. After comparing, we find that the INTEG-STRAT requires fewer samples to become stable and has higher accuracy. At site 1, when the correlation coefficient between NDVI image and the simulated NDVI surface reached 80%, INTEG-STRAT needed only 70 sampling points while other methods require more sampling points. At the same time, INTEG-STRAT strategy has a smaller RMSE between the estimated values and the corresponding values on prior knowledge image. In general, INTEG-STRAT is an effective method in the selection of representative samples to support the validation of vegetation indices products with medium and high spatial resolution.


2021 ◽  
Author(s):  
Yanran Ding ◽  
Mengchao Zhang ◽  
Chuanzheng Li ◽  
Hae-Won Park ◽  
Kris Hauser

2021 ◽  
Author(s):  
Viet-Anh Le ◽  
Linh Nguyen ◽  
Truong X. Nghiem

Adaptive sampling in a resource-constrained mobile robotic sensor network for monitoring a spatial phenomenon is a fundamental but challenging problem. In applications where a Gaussian Process is employed to model a spatial field and then to predict the field at unobserved locations, the adaptive sampling problem can be formulated as minimizing the negative log determinant of a predicted covariance matrix, which is a non-convex and highly complex function. Consequently, this optimization problem is typically addressed in a grid-based discrete domain, although it is combinatorial NP-hard and only a near-optimal solution can be obtained. To overcome this challenge, we propose using a proximal alternating direction method of multipliers (Px-ADMM) technique to solve the adaptive sampling optimization problem in a continuous domain. Numerical simulations using a real-world dataset demonstrate that the proposed PxADMM- based method outperforms a commonly used grid-based greedy method in the final model accuracy.


2021 ◽  
Author(s):  
Viet-Anh Le ◽  
Linh Nguyen ◽  
Truong X. Nghiem

Adaptive sampling in a resource-constrained mobile robotic sensor network for monitoring a spatial phenomenon is a fundamental but challenging problem. In applications where a Gaussian Process is employed to model a spatial field and then to predict the field at unobserved locations, the adaptive sampling problem can be formulated as minimizing the negative log determinant of a predicted covariance matrix, which is a non-convex and highly complex function. Consequently, this optimization problem is typically addressed in a grid-based discrete domain, although it is combinatorial NP-hard and only a near-optimal solution can be obtained. To overcome this challenge, we propose using a proximal alternating direction method of multipliers (Px-ADMM) technique to solve the adaptive sampling optimization problem in a continuous domain. Numerical simulations using a real-world dataset demonstrate that the proposed PxADMM- based method outperforms a commonly used grid-based greedy method in the final model accuracy.


2021 ◽  
Author(s):  
Viet-Anh Le ◽  
Linh Nguyen ◽  
Truong X. Nghiem

Adaptive sampling in a resource-constrained mobile robotic sensor network for monitoring a spatial phenomenon is a fundamental but challenging problem. In applications where a Gaussian Process is employed to model a spatial field and then to predict the field at unobserved locations, the adaptive sampling problem can be formulated as minimizing the negative log determinant of a predicted covariance matrix, which is a non-convex and highly complex function. Consequently, this optimization problem is typically addressed in a grid-based discrete domain, although it is combinatorial NP-hard and only a near-optimal solution can be obtained. To overcome this challenge, we propose using a proximal alternating direction method of multipliers (Px-ADMM) technique to solve the adaptive sampling optimization problem in a continuous domain. Numerical simulations using a real-world dataset demonstrate that the proposed PxADMM- based method outperforms a commonly used grid-based greedy method in the final model accuracy.


2021 ◽  
Vol 32 (2) ◽  
pp. 318-330
Author(s):  
Zhen Huixiang ◽  
Gong Wenyin ◽  
Wang Ling

Sign in / Sign up

Export Citation Format

Share Document