scholarly journals Sampling Optimization and Crop Interface Effects on Lygus lineolaris Populations in Southeastern USA Cotton

Insects ◽  
2022 ◽  
Vol 13 (1) ◽  
pp. 88
Author(s):  
Seth J. Dorman ◽  
Sally V. Taylor ◽  
Sean Malone ◽  
Phillip M. Roberts ◽  
Jeremy K. Greene ◽  
...  

Tarnished plant bug, Lygus lineolaris (Hemiptera: Miridae), is an economically damaging pest in cotton production systems across the southern United States. We systematically scouted 120 commercial cotton fields across five southeastern states during susceptible growth stages in 2019 and 2020 to investigate sampling optimization and the effect of interface crop and landscape composition on L. lineolaris abundance. Variance component analysis determined field and within-field spatial scales, compared with agricultural district and state, accounted for more variation in L. lineolaris density using sweep net and drop cloth sampling. This result highlights the importance of field-level scouting efforts. Using within-field samples, a fixed-precision sampling plan determined 8 and 23 sampling units were needed to determine L. lineolaris population estimates with 0.25 precision for sweep net (100 sweeps per unit) and drop cloth (1.5 row-m per unit) sampling, respectively. A spatial Bayesian hierarchical model was developed to determine local landscape (<0.5 km from field edges) effects on L. lineolaris in cotton. The proportion of agricultural area and double-crop wheat and soybeans were positively associated with L. lineolaris density, and fields with more contiguous cotton areas negatively predicted L. lineolaris populations. These results will improve L. lineolaris monitoring programs and treatment management decisions in southeastern USA cotton.

2008 ◽  
Vol 100 (1) ◽  
pp. 42-51 ◽  
Author(s):  
P. Jost ◽  
D. Shurley ◽  
S. Culpepper ◽  
P. Roberts ◽  
R. Nichols ◽  
...  

2021 ◽  
Author(s):  
Steven E Naranjo ◽  
James R Hagler ◽  
John A Byers

Abstract Conservation biological control is a fundamental tactic in integrated pest management (IPM). Greater biological control services can be achieved by enhancing agroecosystems to be more favorable to the presence, survival, and growth of natural enemy populations. One approach that has been tested in numerous agricultural systems is the deployment of synthetic chemicals that mimic those produced by the plant when under attack by pests. These signals may attract arthropod natural enemies to crop habitats and thus potentially improve biological control activity locally. A 2-yr field study was conducted in the cotton agroecosystem to evaluate the potential of synthetic methyl salicylate (MeSA) to attract native arthropod natural enemies and to enhance biological control services on two key pests. Slow-release packets of MeSA were deployed in replicated cotton plots season long. The abundance of multiple taxa of natural enemies and two major pests were monitored weekly by several sampling methods. The deployment of MeSA failed to increase natural enemy abundance and pest densities did not decline. Predator to prey ratios, used as a proxy to estimate biological control function, also largely failed to increase with MeSA deployment. One exception was a season-long increase in the ratio of Orius tristicolor (White) (Hemiptera: Anthocoridae) to Bemisia argentifolii Bellows and Perring (= Bemisia tabaci MEAM1) (Hemiptera: Aleyrodidae) adults within the context of biological control informed action thresholds. Overall results suggest that MeSA would not likely enhance conservation biological control by the natural enemy community typical of U.S. western cotton production systems.


1965 ◽  
Vol 8 (4) ◽  
pp. 0568-0571 ◽  
Author(s):  
E. J. Matthews and G. R. Tupper

Land ◽  
2020 ◽  
Vol 9 (11) ◽  
pp. 422
Author(s):  
Ramon Felipe Bicudo da Silva ◽  
Mateus Batistella ◽  
James D. A. Millington ◽  
Emilio Moran ◽  
Luiz A. Martinelli ◽  
...  

Agricultural systems are heterogeneous across temporal and spatial scales. Although much research has investigated farm size and economic output, the synergies and trade-offs across various agricultural and socioeconomic variables are unclear. This study applies a GIS-based approach to official Brazilian census data (Agricultural Censuses of 1995, 2006, and 2017) and surveys at the municipality level to (i) evaluate changes in the average soybean farm size across the country and (ii) compare agricultural and socioeconomic outcomes (i.e., soybean yield, agricultural production value, crop production diversity, and rural labor employment) relative to the average soybean farm size. Statistical tests (e.g., Kruskal–Wallis tests and Spearman’s correlation) were used to analyze variable outcomes in different classes of farm sizes and respective Agricultural Censuses. We found that agricultural and socioeconomic outcomes are spatially correlated with soybean farm size class. Therefore, based on the concepts of trade-offs and synergies, we show that municipalities with large soybean farm sizes had larger trade-offs (e.g., larger farm size was associated with lower crop diversity), while small and medium ones manifest greater synergies. These patterns are particularly strong for analysis using the Agricultural Census of 2017. Trade-off/synergy analysis across space and time is key for supporting long-term strategies aiming at alleviating unemployment and providing sustainable food production, essential to achieve the UN Sustainable Development Goals.


Animals ◽  
2019 ◽  
Vol 9 (10) ◽  
pp. 725 ◽  
Author(s):  
Lifeng Dong ◽  
Binchang Li ◽  
Qiyu Diao

Enteric methane (CH4) emissions from young ruminants contribute to a substantial proportion of atmospheric CH4 accumulation. Development of emission inventory and mitigation approaches needs accurate estimation of individual emission from animals under various physiological conditions and production systems. This research investigated the effect of different dietary concentrate contents on feed intake, growth performance, nutrient digestibility and CH4 emissions of heifers at various stages, and also developed linear or non-linear prediction equations using data measured by sulphur hexafluoride tracer technique. Increasing dietary concentrate contents increased feed intake and growth rate, enhanced nutrient digestibility, and reduced enteric CH4 emissions. Heifers at the age of 9, 12, and 15 months with an average weight of 267.7, 342.1, and 418.6 kg produced 105.2, 137.4, and 209.4 g/day of CH4, and have an average value of CH4 energy per gross energy intake (Ym) 0.054, 0.064, 0.0667, respectively. Equations relating CH4 emission values with animal and feed characteristics were developed with high determination coefficients for heifers at different growth stages. Dietary concentrate contents had significant influence on overall performance of heifers. These data can be used to develop regional or national emission inventories and mitigation approaches for heifers under various production regimes in China.


2020 ◽  
pp. 1-14
Author(s):  
Mohammadreza Asghari ◽  
Feridoun Ahmadi ◽  
Ramin Hajitagilou

BACKGROUND: For global water shortage concerns and high cost of mineral nutrients it is necessary to decrease the amount of nutrient solutions in greenhouse production systems. Deficit fertigation may negatively affect the crop productivity and phytohormones can mitigate the adverse effects of stresses. OBJECTIVE: We studied the effects of deficit fertigation in combination with salicylic acid (SA) and putrescine (PUT) on strawberry fruit yield and quality. METHODS: Strawberry plants were fertilized with a complete nutrient solution of 220 (control), 180 (mild deficit fertigation) and/or 140 mL/dD (severe deficit fertigation), and treated with PUT (at 0 and 2 mM) and/or SA (at 0 and 2 mM) and the combinations of these treatments during growth stages. Fruit growth, quality parameters, yield and phytochemical compounds were evaluated at harvest. RESULTS: Mild deficit fertigation (MDF) (140 mL/d) significantly enhanced the yield and quality of the fruit, and both PUT and SA, enhanced the positive effects of MDF on crop productivity. SA and PUT decreased the negative effects of DF on crop yield and fruit growth. CONCLUSIONS: The results of this study indicate that it is possible to substantially enhance the quality and productivity of strawberries with a MDF regime, and PUT and SA treatments.


2012 ◽  
Vol 103 (2) ◽  
pp. 171-181 ◽  
Author(s):  
G.H. Baker ◽  
C.R. Tann

AbstractTransgenic (Bt) cotton dominates Australian cotton production systems. It is grown to control feeding damage by lepidopteran pests such as Helicoverpa armigera. The possibility that these moths might become resistant to Bt remains a threat. Consequently, refuge crops (with no Bt) must be grown with Bt cotton to produce large numbers of Bt-susceptible moths to reduce the risk of resistance developing. A key assumption of the refuge strategy, that moths from different host plant origins mate at random, remains untested. During the period of the study reported here, refuge crops included pigeon pea, conventional cotton (C3 plants), sorghum or maize (C4 plants). To identify the relative contributions made by these (and perhaps other) C3 and C4 plants to populations of H. armigera in cotton landscapes, we measured stable carbon isotopes (δ13C) within individual moths captured in the field. Overall, 53% of the moths were of C4 origin. In addition, we demonstrated, by comparing the stable isotope signatures of mating pairs of moths, that mating is indeed random amongst moths of different plant origins (i.e. C3 and C4). Stable nitrogen isotope signatures (δ15N) were recorded to further discriminate amongst host plant origins (e.g. legumes from non-legumes), but such measurements proved generally unsuitable. Since 2010, maize and sorghum are no longer used as dedicated refuges in Australia. However, these plants remain very common crops in cotton production regions, so their roles as ‘unstructured’ refuges seem likely to be significant.


1989 ◽  
Vol 24 (2) ◽  
pp. 218-223 ◽  
Author(s):  
R. J. Freeman ◽  
A. J. Mueller

The seasonal occurrence of the tarnished plant bug (TPB), Lygus lineolaris (Palisot de Beauvois), on soybean in Arkansas was examined in 1986 and 1987. Peak populations of TPB adults occurred in 1986 in mid-June in the southeast (SE) and mid-July in the southwest (SW) and westcentral (WC) areas. Population peaks in 1987 occurred in late July in the SW and WC areas but rapidly declined during the first week of August. Peaks occurred in each area at different plant growth stages. TPB adults apparently migrate from other plant hosts, probably wild hosts, to soybean for a brief period, after which they move to a more desirable host. Very few TPB nymphs were found relative to the number of samples taken and TPB adults collected.


Sign in / Sign up

Export Citation Format

Share Document