scholarly journals Combined application of zinc and iron-lysine and its effects on morpho-physiological traits, antioxidant capacity and chromium uptake in rapeseed (Brassica napus L.)

PLoS ONE ◽  
2022 ◽  
Vol 17 (1) ◽  
pp. e0262140
Author(s):  
Ihsan Elahi Zaheer ◽  
Shafaqat Ali ◽  
Muhammad Hamzah Saleem ◽  
Hafiza Sana Yousaf ◽  
Afifa Malik ◽  
...  

Environmental contamination of chromium (Cr) has gained substantial consideration worldwide because of its high levels in the water and soil. A pot experiment using oil seed crop (rapeseed (Brassica napus L.)) grown under different levels of tannery wastewater (0, 33, 66 and 100%) in the soil using the foliar application of zinc (Zn) and iron (Fe)–lysine (lys) has been conducted. Results revealed that a considerable decline in the plant growth and biomass elevates with the addition of concentrations of tannery wastewater. Maximum decline in plant height, number of leaves, root length, fresh and dry biomass of root and leaves were recorded at the maximum level of tannery wastewater application (100%) compared to the plants grown without the addition of tannery wastewater (0%) in the soil. Similarly, contents of carotenoid and chlorophyll, gas exchange parameters and activities of various antioxidants (superoxidase dismutase (SOD), peroxidase (POD), catalase (CAT) and ascorbate peroxidase (APX)) were also reduced significantly (P < 0.05) with the increasing concentration of tannery wastewater (33, 66 and 100%) in the soil. In addition, a combined application of Zn and Fe-lys reduced the accumulation and uptake of toxic Cr, while boosting the uptake of essential micronutrients such as Zn and Fe in different tissues of the plants. Results concluded that exogenous application of micronutrients chelated with amino acid successfully mitigate Cr stress in B. napus. Under field conditions, supplementation with these micronutrient-chelated amino acids may be an effective method for alleviating metal stress in other essential seed crops.

Plants ◽  
2020 ◽  
Vol 9 (9) ◽  
pp. 1145 ◽  
Author(s):  
Ihsan Elahi Zaheer ◽  
Shafaqat Ali ◽  
Muhammad Hamzah Saleem ◽  
Muhammad Arslan Ashraf ◽  
Qurban Ali ◽  
...  

Contamination of soil and water with metals and metalloids is one of the most serious problems worldwide due to a lack of a healthy diet and food scarcity. Moreover, the cultivation of oilseed crops such as rapeseed (Brassica napus L.) with tannery wastewater could contain a large amount of toxic heavy metals [e.g., chromium (Cr)], which ultimately reduce its yield and directly influence oilseed quality. To overcome Cr toxicity in B. napus, a pot experiment was conducted to enhance plant growth and biomass by using newly introduced role of micronutrient-amino chelates [Zinc-lysine (Zn-lys)], which was irrigated with different levels [0% (control), 33%, 66%, and 100%] of tannery wastewater. According to the results of present findings, very high content of Cr in the wastewater directly affected plant growth and composition as well as gas exchange parameters, while boosting up the production of reactive oxygen species (ROS) and induced oxidative damage in the roots and leaves of B. napus. However, activities of antioxidants initially increased (33% of wastewater), but further addition of tannery wastewater in the soil caused a decrease in antioxidant enzymes, which also manifested by Zn content, while the conscious addition of wastewater significantly increased Cr content in the roots and shoots of B. napus. To reduce Cr toxicity in B. napus plants, exogenous supplementation of Zn-lys (10 mg/L) plays an effective role in increasing morpho-physiological attributes of B. napus and also reduces the oxidative stress in the roots and leaves of the oilseed crop (B. napus). Enhancement in different growth attributes was directly linked with increased in antioxidative enzymes while decreased uptake and accumulation of Cr content in B. napus when cultivated in wastewater with the application of Zn-lys. Zn-lys, therefore, plays a protective role in reducing the Cr toxicity of B. napus through an increase in plant growth and lowering of Cr uptake in various plant organs. However, further studies at field levels are required to explore the mechanisms of Zn–lys mediated reduction of Cr and possibly other heavy metal toxicity in plants.


Agronomy ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 68
Author(s):  
Mariusz Stepaniuk ◽  
Aleksandra Głowacka

The objective of this study was to assess the yield efficiency of sulphur-enhanced fertilisers, depending on the dose and application method, in a short-lived (three-year) monoculture of winter oilseed rape under the climate and soil conditions of south-eastern Poland. The experiment was carried out between 2010 and 2013 on winter oilseed rape (Brassica napus L. var. napus) of the Orlando variety, fertilised with different sulphur doses—0, 20, 40 or 60 kg S ha−1 applied in different method—soil application sowing, foliar application in the spring, and soil application sowing + foliar application in the spring (combined application). Following the harvest, seed and straw yields and the content of macroelements (N, S, P, K, Ca and Mg) in the seed and straw samples were determined. The harvest indices were also established for each of these elements. The impact of sulphur on winter oilseed rape yield depended significantly on both the dose and the application method. Even at the lowest dose (20 kg·ha−1), sulphur materially increased seed yield, regardless of the application method. With autumn soil application and foliar application, differences between the lowest dose and the higher doses (40 and 60 kg·ha−1) were not significant. However, with combined application, the highest dose (60 kg·ha−1) significantly increased yield compared to the lower doses. In general, all the fertilisation approaches significantly increased the N, P, K, Ca and Mg contents compared to the control sample, but the differences between them were not substantial. Each of the sulphur application approaches decreased the harvest index for sulphur. The foliar application of each of the doses decreased the harvest indices for N, P, K and Ca. The soil application of 20 kg·ha−1, and the mixed application of 40 and 60 kg·ha−1, all increased the harvest indices for P, K and Ca.


2020 ◽  
Vol 48 (3) ◽  
pp. 1260-1275
Author(s):  
Malihe JAHANI ◽  
Ramazan Ali KHAVARI-NEJAD ◽  
Homa MAHMOODZADEH ◽  
Sara SAADATMAND

Interaction of nanoparticles (NPs) as a significant threat to ecosystems with biological processes of plants is very important. Here, the effects of cobalt oxide (Co3O4) NPs on some physio-biochemical characteristics of Brassica napus L. were investigated. The two-weeks seedlings were sprayed with different concentrations of Co3O4 NPs (0, 50, 100, 250, 500, 1000, 2000, and 4000 mg L-1). The results showed that this treatment significantly affected the fresh and dry weights, area, relative water content (RWC) and relative chlorophyll value (SPAD) of leaves. The highest reduction of growth and biomass indexes occurred at 4000 mg L-1 NPs. The content of H2O2 and electrolyte leakage (EL) increased respectively, after 100 and 250 mg L-1 of Co3O4 NPs and showed a maximum level at 4000 mg L-1. The activities of phenylalanine ammonia lyase (PAL), ascorbate peroxidase (APX) and superoxide dismutase (SOD) increased after 100 mg L-1 of Co3O4 NPs. However, tyrosine ammonia lyase (TAL) activity enhanced after 500 mg L-1. The catalase (CAT) activity and protein content decreased after 1000 mg L-1 of Co3O4 NPs. Application of concentrations higher than 500 mg L-1 of Co3O4 NPs induced polyphenol oxidase (PPO) activity but reduced glutathione reductase (GR). The activities of guaiacol peroxidase (GPX) and glutathione S-transferase (GST) increased at 250-1000 mg L-1 of Co3O4 NPs and then decreased. These results suggested that low concentrations of Co3O4 NPs induced a positive effect on growth parameters but high levels caused extensive oxidative damage and mediated defense responses by organization of phenolic compounds and antioxidative system.


2011 ◽  
Vol 62 (1) ◽  
pp. 25 ◽  
Author(s):  
Muhammad Arslan Ashraf ◽  
Muhammad Sajid Aqeel Ahmad ◽  
Muhammad Ashraf ◽  
Fahad Al-Qurainy ◽  
Muhammad Yasin Ashraf

The effectiveness of exogenous application of K in ameliorating the adverse effects of waterlogging on cotton plants was assessed under greenhouse conditions. Forty-day-old plants were subjected to continuous flooding for 1 week and then K (60 kg ha–1) was applied either as soil application, foliar spray, or in combination. The waterlogging treatment significantly reduced plant height and fresh and dry biomass, photosynthetic pigments, gas exchange parameters and nutrient accumulation (N, K+, Ca2+) in stem, root and leaves of cotton plants, Although Mg2+ content in roots increased significantly due to waterlogging, it was not affected in stem or leaves. In contrast, Mn2+ and Fe2+ contents generally increased under waterlogged conditions. All water relation parameters were also significantly influenced by waterlogging stress. Waterlogged plants supplemented with K showed a significant improvement in growth, photosynthetic pigments and photosynthetic capacity. Potassium supplementation also improved nutrient uptake of waterlogged plants and resulted in significantly higher accumulation of K+, Ca2+, N, Mn2+ and Fe2+ than those plants not supplied with K. Although all modes of K application were effective in mitigating the inhibitory effects of waterlogging, the combined application through soil + foliar spray yielded the best results and the foliar application (alone) being the least effective.


2016 ◽  
Vol 8 (1) ◽  
pp. 98-105 ◽  
Author(s):  
Hamed KESHAVARZ ◽  
Seyed Ali Mohammad MODARRES SANAVY ◽  
Ramin SADEGH GHOL MOGHADAM

In this study the effect of foliar application of salicylic acid on the chlorophyll content, antioxidant enzymes activity, and the content of solute protein and proline were investigated in two canola varieties (Brassica napus L., cv ‘RGS’ and ‘Licord’) leaves during 0, 24, and 48 hours after salicylic acid treatment. The results showed that the content of total chlorophyll was decreased in ‘RGS’ cultivar during the experiment and this process was related with increasing of salicylic acid concentration. The activity of superoxide dismutase, peroxidase, and also lipid peroxidation were increased significantly after 48 hours compared with the first day. The results of catalase activity showed that, this trait was decreased 24 hours after salicylic acid treatment and this decrease was related with salicylic concentration. The content of protein in both cultivars slightly changed and plants treated with salicylic acid had more protein content, by contrast proline was greatly affected by salicylic acid treatment and its content was the highest 24 hours after treatment. According to the present findings the application of salicylic acid has useful effects on the biochemical traits of Brassica napus cultivars. Therefore it may be effective for the improvement of plant growth in cold regions.


2020 ◽  
Vol 33 (1) ◽  
pp. 13-20
Author(s):  
Muhammad Awais Ghani ◽  
Muhammad Mehran Abbas ◽  
Basharat Ali ◽  
Khurram Ziaf ◽  
Muhammad Azam ◽  
...  

Tri-genomic Brassica napus L.wasdeveloped by the cross between Brassica napusand Brassica nigra. The crop is animportant source of vegetable seed oil in Pakistan,after cotton. The low oilseed rape yield is attributed to high temperature in the production zones. Interspecific hybridization using these two speciescan be helpful to produce heat resistant hybrids. On the other hand, it has been found that foliar application of different plant growth regulators can be used to reduce the heat stress in Brassica. The objectiveof this studywas to test the response of three different tri-genomic hybrids to high temperature stressat seedling stage. Seedlings were foliar sprayed with 0.13 mM salicylic acid (SA) prior to exposure tohigh temperatureat two true leaf stage. The plants were harvested after 30 days of sowing for growth and biochemical analysis. Plants ofV38 showed the highest values for all morphological traits and biochemical activities among the threehybrids. In general, plants exposed to the temperature stress exhibited a significant decline in growth, chlorophyll content and enzyme activity.Foliar application of SA significantly improved leaf and root biomass under heat stress.Further, antioxidativeenzyme activities significantly increased in response to SA either compared to control or to plants exposed to temperature stress.It is concluded thatapplication of salicylic acid elevated activity of antioxidative enzymes and was helpful in mitigating the detrimental effects of high temperature inoil seed rape.


10.5219/1356 ◽  
2021 ◽  
Vol 15 ◽  
pp. 156-161
Author(s):  
Tatyana Zubkova ◽  
Svetlana Motyleva ◽  
Olga Dubrovina ◽  
Ján Brindza

A comparative analysis of the seeds ash composition of the breed Rif (Brassica napus L.) rapeseeds grown in the Lipetskaya region was held. The plants were grown in the conditions of the agroecological experiment using mineral (NPK and zeolite) and organic (hen droppings) fertilizers. 6 variants of the experiment were studied – the plants are grown without fertilizers application (the control); the mineral fertilizer (N60:P60:K60) separately and together with zeolite (5 t.ha-1); the zeolite in pure form (5 t.ha-1); hen droppings (5 t.ha-1) separately and together with zeolite (5 t.ha-1). We studied the accumulation of 9 basic elements (in mass %) contained in Brassica napus. seeds ash using the method of energy-dispersive X-ray spectroscopy. The accumulation order of the elements was determined: P ≈ K > Mg ≥ Ca > Mo > S > Zn > Mn > Fe. The proportion of P fluctuated from 10.852 to 11.855 mass %; the proportion of K – from 9.933 till 12.343 mass %. The rapeseeds contained Mg, Ca, and Mo in similar concentrations within the range of 4.0 -5.8 mass %. The combined application of zeolite with organic fertilizer ensured the accumulation of the minerals in the seeds. Correlations between the elements were established. High correlation between elements K and Mo was found (r = 0.96); P and Mg (0.86); P and Fe (r = 0.94); C and Mo (r = 0.86). The positive effect of the combined organic-mineral fertilizers with poultry farms wastes usage on the mineral elements accumulation in rapeseeds was stated. It is noted that the accumulation of P, Ca, Mo, and S in rape seeds leads to a decrease in Zn.


2020 ◽  
Vol 38 (1) ◽  
pp. 69
Author(s):  
Fernando Abasolo Pacheco ◽  
Carlos Michel Ojeda Silvera ◽  
Jonathan Enrique Cervantes Molina ◽  
Enma Moran Villacreses ◽  
Daniel Vera Aviles ◽  
...  

The production of the turnip (Brassica napus L.) in Ecuador, depends largely on the use of agrochemicals, whose indiscriminate use causes negative effects on the environment. Agricultural homeopathy has emerged as an ecological alternative to improve the health status of plants. In order to help improve the sustainable production of vegetables, the effect of two centesimal dynamics (7CH and 31CH) of three homeopathic medicines for human use was evaluated: Silicea terra (SiT), Natrum muriaticum (NaM) and Phosphoricum acidum (PhA ), on the germination, emergence and vegetative development of B. napus plants, applying a completely randomized 2×3+1 block design with three repetitions for the three stages of the crop. The variables evaluated during germination and emergence were: percentage of germination and emergence, length of stem and radicle, fresh weight of the aerial part and radicle, dry weight of the aerial part and radicle. The variables evaluated during vegetative development were: plant height, stem diameter, number of leaves, weight, leaf area and productive yield. Signif icant differences were recorded in all the variables and stages of development studied. The highest germination values corresponded to SiT-7CH and PhA-7CH (100%), surpassing the control group (83.5%). The PhA-7CH and NaM-31CH treatments stimulated stem growth in the germination stage (3.40 cm) and NaM-7CH root growth (4.07 cm) in the emergence stage. During the vegetative development, the plants with the highest production were those treated with NaM-7CH. The highest prof itability of the crop (71.33%), with a benef it / cost ratio of 1.7% was obtained with SiT-7CH. The results obtained suggest that agricultural homeopathy has potential in horticulture, since all treatments favorably influenced the response variables during germination, emergence and vegetative development of (Brassica napus L.).


Sign in / Sign up

Export Citation Format

Share Document