ecological province
Recently Published Documents


TOTAL DOCUMENTS

8
(FIVE YEARS 1)

H-INDEX

5
(FIVE YEARS 0)

2021 ◽  
Author(s):  
C Rhett Jackson ◽  
Caleb Sytsma ◽  
Lori A. Sutter ◽  
Darold P. Batzer

Abstract Defining the upslope extent of Federal Clean Water Act jurisdiction over wetlands and streams has been contentious since the passage of the Act but has large effects on the type, number, and area of wetlands that are protected by legislation. Federal guidance in the US has changed and evolved in response to scientific knowledge, Supreme Court decisions, and policy goals of Presidential Administrations. In 2020, the Trump administration replaced the Obama administration Clean Water Rule with the Navigable Waters Protection Rule with the goal of reducing jurisdiction over so-called isolated depressional wetlands and small streams. Here we use a case study of a titanium sands mining proposal on Trail Ridge southeast of Okefenokee Swamp to illustrate the large reduction in wetland and stream protection engendered by this policy change. Under the Navigable Waters Protection Rule, all seven wetlands within the 232 ha mining area, totaling 131 ha or 56% of the project area, were deemed non-jurisdictional and thus the project required no federal review or permitting. Under an earlier mining application under the Clean Water Rule, all of these wetlands were declared jurisdictional. Trail Ridge is located on the Atlantic Coastal Plain, an ecological province rich in depressional wetlands and ill-defined surface drainages. This case study shows that in such environments, the Navigable Water Protection Rule will allow destruction of large numbers and areas of ecologically significant wetlands.


2014 ◽  
Vol 18 (12) ◽  
pp. 4897-4912 ◽  
Author(s):  
D. L. Ficklin ◽  
B. L. Barnhart ◽  
J. H. Knouft ◽  
I. T. Stewart ◽  
E. P. Maurer ◽  
...  

Abstract. Water temperature is a primary physical factor regulating the persistence and distribution of aquatic taxa. Considering projected increases in air temperature and changes in precipitation in the coming century, accurate assessment of suitable thermal habitats in freshwater systems is critical for predicting aquatic species' responses to changes in climate and for guiding adaptation strategies. We use a hydrologic model coupled with a stream temperature model and downscaled general circulation model outputs to explore the spatially and temporally varying changes in stream temperature for the late 21st century at the subbasin and ecological province scale for the Columbia River basin (CRB). On average, stream temperatures are projected to increase 3.5 °C for the spring, 5.2 °C for the summer, 2.7 °C for the fall, and 1.6 °C for the winter. While results indicate changes in stream temperature are correlated with changes in air temperature, our results also capture the important, and often ignored, influence of hydrological processes on changes in stream temperature. Decreases in future snowcover will result in increased thermal sensitivity within regions that were previously buffered by the cooling effect of flow originating as snowmelt. Other hydrological components, such as precipitation, surface runoff, lateral soil water flow, and groundwater inflow, are negatively correlated to increases in stream temperature depending on the ecological province and season. At the ecological province scale, the largest increase in annual stream temperature was within the Mountain Snake ecological province, which is characterized by migratory coldwater fish species. Stream temperature changes varied seasonally with the largest projected stream temperature increases occurring during the spring and summer for all ecological provinces. Our results indicate that stream temperatures are driven by local processes and ultimately require a physically explicit modeling approach to accurately characterize the habitat regulating the distribution and diversity of aquatic taxa.


2014 ◽  
Vol 11 (6) ◽  
pp. 5793-5829 ◽  
Author(s):  
D. L. Ficklin ◽  
B. L. Barnhart ◽  
J. H. Knouft ◽  
I. T. Stewart ◽  
E. P. Maurer ◽  
...  

Abstract. Water temperature is a primary physical factor regulating the persistence and distribution of aquatic taxa. Considering projected increases in temperature and changes in precipitation in the coming century, accurate assessment of suitable thermal habitat in freshwater systems is critical for predicting aquatic species responses to changes in climate and for guiding adaptation strategies. We use a hydrologic model coupled with a stream temperature model and downscaled General Circulation Model outputs to explore the spatially and temporally varying changes in stream temperature at the subbasin and ecological province scale for the Columbia River Basin. On average, stream temperatures are projected to increase 3.5 °C for the spring, 5.2 °C for the summer, 2.7 °C for the fall, and 1.6 °C for the winter. While results indicate changes in stream temperature are correlated with changes in air temperature, our results also capture the important, and often ignored, influence of hydrological processes on changes in stream temperature. Decreases in future snowcover will result in increased thermal sensitivity within regions that were previously buffered by the cooling effect of flow originating as snowmelt. Other hydrological components, such as precipitation, surface runoff, lateral soil flow, and groundwater, are negatively correlated to increases in stream temperature depending on the season and ecological province. At the ecological province scale, the largest increase in annual stream temperature was within the Mountain Snake ecological province, which is characterized by non-migratory coldwater fish species. Stream temperature changes varied seasonally with the largest projected stream temperature increases occurring during the spring and summer for all ecological provinces. Our results indicate that stream temperatures are driven by local processes and ultimately require a physically-explicit modeling approach to accurately characterize the habitat regulating the distribution and diversity of aquatic taxa.


2012 ◽  
Vol 260-261 ◽  
pp. 988-992 ◽  
Author(s):  
Hao Cheng ◽  
Yong Chun Huang ◽  
Jian Hua Xiong

Based on the target of ecological province, the meaning of ecological province is analyzed, the assessment objects and content of building an ecological province are elaborated, the structural model and the principle of selecting indicators are discussed. Taking the ecological province building plan of Guangxi Province as a case to be studied.


2009 ◽  
Vol 66 (9) ◽  
pp. 1569-1581 ◽  
Author(s):  
John R. Hyde ◽  
Russell D. Vetter

Recent studies have revealed that the vermilion rockfish Sebastes miniatus is a cryptic species pair. The splitting of this species impacts stock size estimates and draws attention to the unintended consequences of current management policies. Differences in exploitation level between the species necessitated an evaluation of population structure and connectivity among regional management segments of the fishery. Analysis of gene flow and calculations of larval dispersal values were accomplished using 782 bp of DNA sequence data from the mitochondrial cytochrome b gene of 684 vermilion rockfish sampled from 16 sites between Kyuquot Sound, Canada, and San Quintin, Mexico. Significant genetic heterogeneity was found among sample sites (ΦST = 0.0742, p < 0.001 and FST = 0.0899, p < 0.001). Isolation by distance analysis produced a significant correlation, suggesting low average larval dispersal distance. Analysis of molecular variance showed significant partitioning of genetic variance across the biogeographic boundary at Point Conception (ΦCT = 0.0923, p < 0.001 and FCT = 0.0135, p < 0.001) with additional genetic barriers found at Cape Mendocino, Punta Colnett, Santa Monica Bay, and along the coast of Washington. These genetic barriers conform to oceanographic compartments previously proposed for the California Current Ecological Province and suggest natural management units for this species.


2008 ◽  
Vol 38 (3) ◽  
pp. 429-438 ◽  
Author(s):  
Ronald E. McRoberts ◽  
Susanne Winter ◽  
Gherardo Chirici ◽  
Elmar Hauk ◽  
Dieter R. Pelz ◽  
...  

Forest structural diversity was estimated for an ecological province in the north-central region of the United States of America using data for nearly 350 000 trees observed on >12 000 forest inventory plots. Each plot was 672 m2 in area, and the sampling intensity was approximately 1 plot/2400 ha. Two indices were used for each of two commonly and accurately measured inventory variables: species count and the Shannon index for tree species and standard deviation and the Shannon index for tree diameter. The primary results of the study were fourfold: (i) ranges of spatial correlation for diversity indices were small, on the order of 5–10 km, (ii) high proportions of provincewide diversity were realized for circular areas with radii as small as 15 km, (iii) diversity for both species and diameter exhibited strong northwest to southeast spatial patterns, and (iv) plot-level α diameter diversity was highly correlated with mean plot-level tree diameter.


Sign in / Sign up

Export Citation Format

Share Document