plant protease
Recently Published Documents


TOTAL DOCUMENTS

72
(FIVE YEARS 16)

H-INDEX

21
(FIVE YEARS 1)

2021 ◽  
Author(s):  
Sayanta Bera ◽  
Gabriella D Arena ◽  
Swayamjit Ray ◽  
Sydney A. Flannigan ◽  
Clare L Casteel

Potyviral genomes encode just 11 major proteins and multifunctionality is associated to most of these proteins at different stages of virus life cycle. The potyviral protein 6K1 is required for potyvirus replication at the early stages of viral infection and may mediate cell-to-cell movement at later stages.Our study demonstrates that the 6K1 protein from Turnip mosaic virus (TuMV) reduces the abundance of transcripts related to jasmonic acid biosynthesis and transcripts that encode cysteine protease inhibitors when expressed in trans in Nicotiana benthamiana relative to controls. Furthermore, 6K1 stability increases when lipoxygenase and cysteine protease activity is inhibited chemically, linking a mechanism to the rapid turnover of 6K1 when expressed in trans. Using transient expression, we show 6K1 is degraded rapidly at early time points in the infection process, whereas at later stages of infection protease activity is reduced and 6K1 becomes more stable, resulting in higher TuMV accumulation in systemic leaves. There was no impact of 6K1 transient expression on TuMV accumulation in local leaves. Together, these results suggest a novel function for the TuMV 6K1 protein which has not been reported previously and enhances our understanding of the complex interactions occurring between plants and potyviruses.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Cleide Oliveira ◽  
Mayara Vioto Valois ◽  
Tatiana Fontes Ottaiano ◽  
Antonio Miranda ◽  
Daiane Hansen ◽  
...  

AbstractThe anti-inflammatory effects of the plant protease inhibitor BbCI (Bauhinia bauhinioides cruzipain inhibitor), which blocks elastase, cathepsin G, and L, and proteinase 3 has been demonstrated. Here, we investigated the recombinant rBbCI-His(6) (containing a histidine tail) in an experimental venous thrombosis model of vena cava (VC) ligature in rats, comparing to heparin. We evaluate the effects of the inhibitors (native or recombinant) or heparin on the activated partial thromboplastin time (aPTT) and prothrombin time (PT) in human and rat plasmas. The rats undergoing treatment received a saline solution or increasing concentrations of rBbCI-His(6), heparin, or a mixture of both. After 4 h of ligature VC, thrombus, if present was removed and weighed. aPTT, PT, and cytokines were measured in blood collected by cardiac puncture. aPTT, PT, and bleeding time (BT) were also measured at the time of VC (vena cava) ligature. rBbCI-His(6) (0.45 or 1.40 mg/kg) does not alter aPTT, PT or BT. No differences in coagulation parameters were detected in rBbCI-His(6) treated rats at the time of VC ligature or when the thrombus was removed. There was a significant decrease in the weight of thrombus in the animals of the groups treated with the rBbCI-His(6) (1.40 mg/kg), with the rBbCI-His(6) mixture (1.40 mg/kg) + heparin (50 IU/kg) and heparin (100 IU/kg) in relation to control group (saline). The growth-related oncogene/keratinocyte chemoattractant (GRO/KC) serum levels in rats treated with rBbCI-His(6) (1.40 mg/kg) or heparin (200 IU/kg) were reduced. In the experimental model used, rBbCI-His(6) alone had an antithrombotic effect, not altering blood clotting or bleeding time.


Plants ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 602
Author(s):  
Sonia Yoo Im ◽  
Camila Ramalho Bonturi ◽  
Adriana Miti Nakahata ◽  
Clóvis Ryuichi Nakaie ◽  
Arnildo Pott ◽  
...  

Metastasis, the primary cause of death from malignant tumors, is facilitated by multiple protease-mediated processes. Thus, effort has been invested in the development of protease inhibitors to prevent metastasis. Here, we investigated the effects of protease inhibitors including the recombinant inhibitors rBbKI (serine protease inhibitor) and rBbCI (serine and cysteine inhibitor) derived from native inhibitors identified in Bauhinia bauhinioides seeds, and EcTI (serine and metalloprotease inhibitor) isolated from the seeds of Enterolobium contortisiliquum on the mouse fibrosarcoma model (lineage L929). rBbKI inhibited 80% of cell viability of L929 cells after 48 h, while EcTI showed similar efficacy after 72 h. Both inhibitors acted in a dose and time-dependent manner. Conversely, rBbCI did not significantly affect the viability of L929 cells. Confocal microscopy revealed the binding of rBbKI and EcTI to the L929 cell surface. rBbKI inhibited approximately 63% of L929 adhesion to fibronectin, in contrast with EcTI and rBbCI, which did not significantly interfere with adhesion. None of the inhibitors interfered with the L929 cell cycle phases. The synthetic peptide RPGLPVRFESPL-NH2, based on the BbKI reactive site, inhibited 45% of the cellular viability of L929, becoming a promising protease inhibitor due to its ease of synthesis.


PLoS ONE ◽  
2021 ◽  
Vol 16 (1) ◽  
pp. e0245649
Author(s):  
Pawan Kumar ◽  
Tabasum Akhter ◽  
Parul Bhardwaj ◽  
Rakesh Kumar ◽  
Usha Bhardwaj ◽  
...  

Rapid adaptive responses were evident from reciprocal host-plant switches on performance, digestive physiology and relative gene expression of gut serine proteases in larvae of crucifer pest P. brassicae transferred from cauliflower (CF, Brassica oleracea var. botrytis, family Brassicaceae) to an alternate host, garden nasturtium, (GN, Tropaeolum majus L., family Tropaeolaceae) and vice-versa under laboratory conditions. Estimation of nutritional indices indicated that larvae of all instars tested consumed the least food and gained less weight on CF-GN diet (significant at p≤0.05) as compared to larvae feeding on CF-CF, GN-GN and GN-CF diets suggesting that the switch to GN was nutritionally less favorable for larval growth. Nevertheless, these larvae, especially fourth instars, were adroit in utilizing and digesting GN as a new host plant type. In vitro protease assays conducted to understand associated physiological responses within twelve hours indicated that levels and properties of gut proteases were significantly influenced by type of natal host-plant consumed, change in diet as well as larval age. Activities of gut trypsins and chymotrypsins in larvae feeding on CF-GN and GN-CF diets were distinct, and represented shifts toward profiles observed in larvae feeding continuously on GN-GN and CF-CF diets respectively. Results with diagnostic protease inhibitors like TLCK, STI and SBBI in these assays and gelatinolytic zymograms indicated complex and contrasting trends in gut serine protease activities in different instars from CF-GN diet versus GN-CF diet, likely due to ingestion of plant protease inhibitors present in the new diet. Cloning and sequencing of serine protease gene fragments expressed in gut tissues of fourth instar P. brassicae revealed diverse transcripts encoding putative trypsins and chymotrypsins belonging to at least ten lineages. Sequences of members of each lineage closely resembled lepidopteran serine protease orthologs including uncharacterized transcripts from Pieris rapae. Differential regulation of serine protease genes (Pbr1-Pbr5) was observed in larval guts of P. brassicae from CF-CF and GN-GN diets while expression of transcripts encoding two putative trypsins (Pbr3 and Pbr5) were significantly different in larvae from CF-GN and GN-CF diets. These results suggested that some gut serine proteases that were differentially expressed in larvae feeding on different species of host plants were also involved in rapid adaptations to dietary switches. A gene encoding nitrile-specifier protein (nsp) likely involved in detoxification of toxic products from interactions of ingested host plant glucosinolates with myrosinases was expressed to similar levels in these larvae. Taken together, these snapshots reflected contrasts in physiological and developmental plasticity of P. brassicae larvae to nutritional challenges from wide dietary switches in the short term and the prominent role of gut serine proteases in rapid dietary adaptations. This study may be useful in designing novel management strategies targeting candidate gut serine proteases of P. brassicae using RNA interference, gene editing or crops with transgenes encoding protease inhibitors from taxonomically-distant host plants.


2020 ◽  
Vol 12 (12) ◽  
pp. 1-8
Author(s):  
Bunty Maskey ◽  
Nabindra Kumar Shrestha

The use of plant protease instead of chymosin for producing cheese has become a trend which is aimed at lacto-vegetarian consumers and religion based ecological markets. In this context, the present investigation was carried out in order to utilize milk clotting enzyme from Papaya (Carica papaya). Numerical optimization study revealed that maximum milk clotting activity was achieved at pH 6.5, temperature 70℃ and enzyme concentration 1 g/1000 ml milk using papaya protease as coagulant. Protein, ash and calcium showed no significant (p>0.05) difference among the cheeses made using different coagulants. However, significantly (p<0.05) higher levels of moisture and ash, and lower levels of fat were observed in the cheese produced by papaya protease compared to that made using rennet. Papaya protease significantly enhanced the spreadability of cheese while the other sensory properties were similar to the control except aftertaste. The results revealed that the papaya latex as crude papaya protease may have potential application for the manufacture of soft-unripened cheese and further could be utilized as a milk coagulant in cheese making.


2020 ◽  
Vol 11 ◽  
Author(s):  
Jack N. Losso

SARS CoV-2 virus is primed by proteases before it attaches to host cells and causes the Coronavirus Diseases-2019 (COVID-19). The proteases that activate SARS-CoV-2 virus can be inhibited by proteins naturally occurring in human plant foods such as legumes. Food science contribution to the fight against SARS-CoV-2 infection and COVID-19 needs to extend beyond the traditional involvement in developing and securing high quality foods to include investigating foods rich in plant protease inhibitors as novel foods for SARS-CoV-2 and COVID-19 prevention. 


Author(s):  
Juliana Morelli Lopes Gonçalves João ◽  
Jessica Anastácia Silva Barbosa ◽  
Luana Laura Sales Da Silva ◽  
Tabata Maruyama Dos Santos ◽  
Leandr Do Nascimento Camargo ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document