hematite phase
Recently Published Documents


TOTAL DOCUMENTS

25
(FIVE YEARS 4)

H-INDEX

8
(FIVE YEARS 1)

2021 ◽  
Vol 12 (4) ◽  
pp. 4626-4636

Hematite nanoparticles of average size 20 nm were synthesized using the sol-gel method, and the structural characterizations were conducted using XRD and TEM. The XRD profile revealed a small fraction of the maghemite phase and the main hematite phase. Mössbauer spectroscopy was used to study the magnetic structure of the particles and revealed a third but very slight non-magnetic phase. Mössbauer spectrum shows 35% of the nanoparticles exhibiting superparamagnetism. The weighted average Morin transition temperature for the particles determined by Mössbauer is 262 K, which is remarkably similar to the bulk value and higher than the Morin transition determined by VSM (about 250 K). The reported findings on the hematite nanoparticles will help understand the enhanced ferromagnetic behavior of the hematite nanoparticles at room temperature, which is crucial for potential applications.


2020 ◽  
Vol 53 (4) ◽  
pp. 896-903
Author(s):  
Flávia Braga de Oliveira ◽  
Gilberto Álvares da Silva ◽  
Leonardo Martins Graça

Magnetite and hematite iron oxides are minerals of great economic and scientific importance. The oxidation of magnetite to hematite is characterized as a topotaxial reaction in which the crystallographic orientations of the hematite crystals are determined by the orientation of the magnetite crystals. Thus, the transformation between these minerals is described by specific orientation relationships, called topotaxial relationships. This study presents electron-backscatter diffraction analyses conducted on natural octahedral crystals of magnetite partially transformed into hematite. Inverse pole figure maps and pole figures were used to establish the topotaxial relationships between these phases. Transformation matrices were also applied to Euler angles to assess the diffraction patterns obtained and confirm the identified relationships. A new orientation condition resulting from the magnetite–hematite transformation was characterized, defined by the parallelism between the octahedral planes {111} of magnetite and rhombohedral planes \{10\bar {1}1\} of hematite. Moreover, there was a coincidence between one of the octahedral planes of magnetite and the basal {0001} plane of hematite, and between dodecahedral planes {110} of magnetite and prismatic planes \{11\bar {2}0\} of hematite. All these three orientation conditions are necessary and define a growth model for hematite crystals from a magnetite crystal. A new topotaxial relationship is also proposed: (111)Mag || (0001)Hem and (\bar {1}\bar {1}1)_{\rm Mag} || (10\bar {1}1)_{\rm Hem}.


2019 ◽  
Vol 14 (1) ◽  
Author(s):  
Aiman Mukhtar ◽  
Xiao-Ming Cao ◽  
Tahir Mehmood ◽  
Da-shuang Wang ◽  
Kai-ming Wu

Abstract One of the big challenge of studying the core-shell iron nanostructures is to know the nature of oxide shell, i.e., whether it is γ-Fe2O3 (Maghemite), Fe3O4 (Magnetite), α-Fe2O3 (Hematite), or FeO (Wustite). By knowing the nature of iron oxide shell with zero valent iron core, one can determine the chemical or physical behavior of core-shell nanostructures. Fe core-shell nanochains (NCs) were prepared through the reduction of Fe3+ ions by sodium boro-hydride in aqueous solution at room atmosphere, and Fe NCs were further aged in water up to 240 min. XRD was used to study the structure of Fe NCs. Further analysis of core-shell nature of Fe NCs was done by TEM, results showed increase in thickness of oxide shell (from 2.5, 4, 6 to 10 nm) as water aging time increases (from 0 min, 120 min, 240 min to 360 min). The Raman spectroscopy was employed to study the oxide nature of Fe NCs. To further confirm the magnetite phase in Fe NCs, the Mössbauer spectroscopy was done on Fe NCs-0 and Fe NCs-6. Result shows the presence of magnetite in the sample before aging in water, and the sample after prolonged aging contains pure Hematite phase. It shows that prolonged water oxidation transforms the structure of shell of Fe NCs from mixture of Hematite and Magnetite in to pure hematite shell. The Magnetic properties of the Fe NCs were measured by VSM at 320 K. Because of high saturation magnetization (Ms) values, Fe NCs could be used as r2 contrasts agents for magnetic resonance imaging (MRI) in near future.


2018 ◽  
Vol 33 (4) ◽  
pp. 287-297 ◽  
Author(s):  
Kristina M. Peterson ◽  
Peter J. Heaney ◽  
Jeffrey E. Post

Synchrotron X-ray diffraction was used to monitor the hydrothermal precipitation of akaganeite (β-FeOOH) and its transformation to hematite (Fe2O3) in situ. Akaganeite was the first phase to form and hematite was the final phase in our experiments with temperatures between 150 and 200 °C. Akaganeite was the only phase that formed at 100 °C. Rietveld analyses revealed that the akaganeite unit-cell volume contracted until the onset of dissolution, and subsequently expanded. This reversal at the onset of dissolution was associated with a substantial and rapid increase in occupancy of the Cl site, perhaps by OH− or Fe3+. Rietveld analyses supported the incipient formation of an OH-rich, Fe-deficient hematite phase in experiments between 150 and 200 °C. The inferred H concentrations of the first crystals were consistent with “hydrohematite.” With continued crystal growth, the Fe occupancies increased. Contraction in both a- and c-axes signaled the loss of hydroxyl groups and formation of a nearly stoichiometric hematite.


2018 ◽  
Vol 8 (11) ◽  
pp. 1702841 ◽  
Author(s):  
Vanchiappan Aravindan ◽  
Yun-Sung Lee

2014 ◽  
Vol 975 ◽  
pp. 116-121
Author(s):  
Bruna da Costa Andrade ◽  
José Cleverton da Conceição Passos ◽  
Marcelo Andrade Macedo

Samples of CayFe12-yO19 (0 ≤ y ≤ 1.0) were prepared by a proteic sol–gel process with hematite phase and clusters of M-type calcium hexaferrite. Impedance analysis showed that the resistivity increased with calcium concentration in the 0.0 < y ≤ 0.2 range, but decreased for y > 0.2. The saturation of the electrical resistivity occurred at 7.5 × 106 Ω·cm for Ca0.9Fe11.1O19. The plot of magnetization as a function of the magnetic field showed high values of saturation magnetization (40 emu/g) with low remanence (6.7 emu/g) and coercive field (320 Oe).


2014 ◽  
Vol 979 ◽  
pp. 271-274 ◽  
Author(s):  
W. Rachniyom ◽  
Y. Ruangtaweep ◽  
J. Kaewkhao ◽  
S. Ruengsri ◽  
K. Phachana

In this work, subbitumious fly ash in Thailand was sintered at different temperatures and analyzed for their compositions and crystal structures. Glasses were prepared from B2O3 mixed with subbitumious fly ash and additive Na2O in various concentrations. The results have shown that SiO2, Al2O3 and Fe2O3 are the major compositions of the fly ash. The crystal structures of fly ash at sintering temperature below to 800 0C are mullite and quartz with the occurrence of hematite phase at 1,000 0C. The density, reflective index and hardness values were found to increase with the increasing of Na2O concentration. The absorption spectra corresponded to the color of the glass (yellow to brown). The higher the Na2O concentration is, the lighter the color of the glasses. The results from this work demonstrated the possibility of glass production from subbitumious fly ash and utilization of industrial waste in Thailand.


2014 ◽  
Vol 2014 (7) ◽  
pp. 1137-1141 ◽  
Author(s):  
Mohamed B. Zakaria ◽  
Ming Hu ◽  
Naoaki Hayashi ◽  
Yoshihiro Tsujimoto ◽  
Shinsuke Ishihara ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document