scholarly journals Quantum storm in a cold cup

2021 ◽  
Vol 52 (3) ◽  
pp. 25-27
Author(s):  
Carlo F. Barenghi ◽  
Ladislav Skrbek

Quantum turbulence, which manifests itself via a tangle of quantized vortices, occurs in quantum fluids, whose properties depend on quantum physics rather than classical physics. Here we report on two limiting forms of quantum turbulence which have been identified and how two-dimensional turbulence, until recently a mathematical idealization, has become experimental reality.

Science ◽  
2019 ◽  
Vol 366 (6472) ◽  
pp. 1480-1485 ◽  
Author(s):  
Yauhen P. Sachkou ◽  
Christopher G. Baker ◽  
Glen I. Harris ◽  
Oliver R. Stockdale ◽  
Stefan Forstner ◽  
...  

Quantized vortices are fundamental to the two-dimensional dynamics of superfluids, from quantum turbulence to phase transitions. However, surface effects have prevented direct observations of coherent two-dimensional vortex dynamics in strongly interacting systems. Here, we overcome this challenge by confining a thin film of superfluid helium at microscale on the atomically smooth surface of a silicon chip. An on-chip optical microcavity allows laser initiation of clusters of quasi–two-dimensional vortices and nondestructive observation of their decay in a single shot. Coherent dynamics dominate, with thermal vortex diffusion suppressed by five orders of magnitude. This establishes an on-chip platform with which to study emergent phenomena in strongly interacting superfluids and to develop quantum technologies such as precision inertial sensors.


2020 ◽  
Author(s):  
Andrew Guthrie ◽  
Sergey Kafanov ◽  
Mark Noble ◽  
Yuri Pashkin ◽  
George Pickett ◽  
...  

Abstract Since we still lack a theory of classical turbulence, attention has focused on the conceptually simpler turbulence in quantum fluids. Can such systems of identical singly-quantized vortices provide a physically accessible "toy model" of the classical counterpart? That said, we have hitherto lacked detectors capable of the real-time, non-invasive probing of the wide range of length scales involved in quantum turbulence. However, we demonstrate here the real-time detection of quantum vortices by a nanoscale resonant beam in superfluid 4He at 10 mK. The basic idea is that we can trap a single vortex along the length of a nanobeam and observe the transitions as a vortex is either trapped or released, which we observe through the shift in the resonant frequency of the beam. With a tuning fork source, we can control the ambient vorticity density and follow its influence on the vortex capture and release rates. But, most important, we show that these devices are capable of probing turbulence on the micron scale.


2021 ◽  
Vol 118 (6) ◽  
pp. e2021957118
Author(s):  
Yuan Tang ◽  
Shiran Bao ◽  
Wei Guo

Generic scaling laws, such as Kolmogorov’s 5/3 law, are milestone achievements of turbulence research in classical fluids. For quantum fluids such as atomic Bose–Einstein condensates, superfluid helium, and superfluid neutron stars, turbulence can also exist in the presence of a chaotic tangle of evolving quantized vortex lines. However, due to the lack of suitable experimental tools to directly probe the vortex-tangle motion, so far little is known about possible scaling laws that characterize the velocity correlations and trajectory statistics of the vortices in quantum-fluid turbulence, i.e., quantum turbulence (QT). Acquiring such knowledge could greatly benefit the development of advanced statistical models of QT. Here we report an experiment where a tangle of vortices in superfluid 4He are decorated with solidified deuterium tracer particles. Under experimental conditions where these tracers follow the motion of the vortices, we observed an apparent superdiffusion of the vortices. Our analysis shows that this superdiffusion is not due to Lévy flights, i.e., long-distance hops that are known to be responsible for superdiffusion of random walkers. Instead, a previously unknown power-law scaling of the vortex–velocity temporal correlation is uncovered as the cause. This finding may motivate future research on hidden scaling laws in QT.


2018 ◽  
Author(s):  
Rajendra K. Bera

It now appears that quantum computers are poised to enter the world of computing and establish its dominance, especially, in the cloud. Turing machines (classical computers) tied to the laws of classical physics will not vanish from our lives but begin to play a subordinate role to quantum computers tied to the enigmatic laws of quantum physics that deal with such non-intuitive phenomena as superposition, entanglement, collapse of the wave function, and teleportation, all occurring in Hilbert space. The aim of this 3-part paper is to introduce the readers to a core set of quantum algorithms based on the postulates of quantum mechanics, and reveal the amazing power of quantum computing.


2021 ◽  
Author(s):  
Marlene Lúcio ◽  
Eduarda Fernandes ◽  
Hugo Gonçalves ◽  
Sofia Machado ◽  
Andreia C. Gomes ◽  
...  

Since its revolutionary discovery in 2004, graphene— a two-dimensional (2D) nanomaterial consisting of single-layer carbon atoms packed in a honeycomb lattice— was thoroughly discussed for a broad variety of applications including quantum physics, nanoelectronics, energy efficiency, and catalysis. Graphene and graphene-based nanomaterials (GBNs) have also captivated the interest of researchers for innovative biomedical applications since the first publication on the use of graphene as a nanocarrier for the delivery of anticancer drugs in 2008. Today, GBNs have evolved into hybrid combinations of graphene and other elements (e.g., drugs or other bioactive compounds, polymers, lipids, and nanoparticles). In the context of developing theranostic (therapeutic + diagnostic) tools, which combine multiple therapies with imaging strategies to track the distribution of therapeutic agents in the body, the multipurpose character of the GBNs hybrid systems has been further explored. Because each therapy and imaging strategy has inherent advantages and disadvantages, a mixture of complementary strategies is interesting as it will result in a synergistic theranostic effect. The flexibility of GBNs cannot be limited to their biomedical applications and, these nanosystems emerge as a viable choice for an indirect effect on health by their future use as environmental cleaners. Indeed, GBNs can be used in bioremediation approaches alone or combined with other techniques such as phytoremediation. In summary, without ignoring the difficulties that GBNs still present before being deemed translatable to clinical and environmental applications, the purpose of this chapter is to provide an overview of the remarkable potential of GBNs on health by presenting examples of their versatility as nanotools for theranostics and bioremediation.


Sign in / Sign up

Export Citation Format

Share Document