Synthesis, characterization and optoelectronic properties of 2D hybrid RPbX4 semiconductors based on an isomer mixture of hexanediamine-based dications

2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Anna Ioannou ◽  
Ioanna Vareli ◽  
Andreas Kaltzoglou ◽  
Ioannis Koutselas

Abstract Three new hybrid two-dimensional (2D) organic–inorganic semiconductors are presented, which contain lead halides and a mixture of hexanediamine-based isomers in the stoichiometry [2,2,4(2,4,4)-trimethyl-1,6-hexanediamine]PbX4 (X = I, Br, Cl). These hexanediamine derivatives, with attached methyl groups at the carbon backbone of both isomers, determine the packing of the organic layers between the inorganic 2D sheets, while the optical absorption and photoluminescence spectra reveal excitonic peaks at T = 77 K and room temperature. The as-synthesized semiconductors were stored for three years in the dark and under low humidity and were examined again and the results were compared to those of the fresh materials. The chloride analogue, after the three year storage, displays white-like luminescence. The use of non-equivalent isomer and racemic mixtures in the organic component to form hybrid organic–inorganic semiconductors is an efficient method to alter the properties of 2D perovskites by tuning the isomers’ chemical functionalities. Finally, a comparison of the observed excitonic absorption and photoluminescence signals to that of analogous 2D compounds is discussed.


Nanomaterials ◽  
2020 ◽  
Vol 10 (6) ◽  
pp. 1023 ◽  
Author(s):  
Ashish Chhaganlal Gandhi ◽  
Chia-Liang Cheng ◽  
Sheng Yun Wu

We report the synthesis of room temperature (RT) stabilized γ–Bi2O3 nanoparticles (NPs) at the expense of metallic Bi NPs through annealing in an ambient atmosphere. RT stability of the metastable γ–Bi2O3 NPs is confirmed using synchrotron radiation powder X-ray diffraction and Raman spectroscopy. γ–Bi2O3 NPs exhibited a strong red-band emission peaking at ~701 nm, covering 81% integrated intensity of photoluminescence spectra. Our findings suggest that the RT stabilization and enhanced red-band emission of γ‒Bi2O3 is mediated by excess oxygen ion vacancies generated at the octahedral O(2) sites during the annealing process.



1990 ◽  
Vol 201 ◽  
Author(s):  
Honglie Shen ◽  
Genqing Yang ◽  
Zuyao Zhou ◽  
Guanqun Xia ◽  
Shichang Zou

AbstractDual implantations of Si+ and P+ into InP:Fe were performed both at 200°C and room temperature. Si+ ions were implanted by 150keV with doses ranging from 5×1013 /cm2 to 1×1015 /cm2, while P+ ions were implanted by 110keV. 160keV and 180keV with doses ranging from 1×l013 /cm2 to 1×1015 /cm2. Hall measurements and photoluminescence spectra were used to characterize the silicon nitride encapsulated annealed samples. It was found that enhanced activation can be obtained by Si+ and P+ dual implantations. The optimal condition for dual implantations is that the atomic distribution of implanted P overlaps that of implanted si with the same implant dose. For a dose of 5×l014 /cm2, the highest activation for dual implants is 70% while the activation for single implant is 40% after annealing at 750°C for 15 minutes. PL spectrum measurement was carried out at temperatures from 11K to 100K. A broad band at about 1.26eV was found in Si+ implanted samples, of which the intensity increased with increasing of the Si dose and decreased with increasing of the co-implant P+ dose. The temperature dependence of the broad band showed that it is a complex (Vp-Sip) related band. All these results indicate that silicon is an amphoteric species in InP.



1995 ◽  
Vol 379 ◽  
Author(s):  
S. Nilsson ◽  
H. P. Zeindl ◽  
A. Wolff ◽  
K. Pressel

ABSTRACTLow-temperature photoluminescence measurements were performed in order to probe the optical quality of SiGe/Si quantum-well wire structures fabricated by electron-beam lithography and subsequent reactive ion etching, having the patterned polymethylmethacrylate resist as an etch mask. In addition, one set of quantum-well wire structures was post-treated by means of annealing in a hydrogen environment. Our results show that even for the smallest wires of about 100nm in width, the wires exhibit phonon-resolved photoluminescence spectra, similar to that from the molecular beam eptitaxially grown SiGe single quantum well which was used as starting material for the patterning process. After the patterning process a new sharp peak appears in the photoluminescence spectra at 0.97eV in photon energy. Our investigation suggests that this feature is introduced by damage during the patterning process and most probably identical to the G-line, which previously was identified as originating from the dicarbon centre (substitutional carbon-interstitial carbon) in Si. This centre is known to be a very common endproduct of irradiating Si near room temperature which is the case at our patterning process.



1977 ◽  
Vol 32 (4) ◽  
pp. 434-437 ◽  
Author(s):  
Wolfgang-R. Knappe

On illumination flavin reacts from its triplet state with dihydroaromatic systems at room temperature yielding 1,5-dihydroflavin. Substrates which are substituted with methyl groups to hinder aromatisation (3,3-dimethyl-1-phenyl-1,4-cyclohexadiene, ergosterol, N-methylacridan, 1,3,10-trimethyl-1,5-dihydro-5-deazaisoalloxazine) yield at -40 °C 4a-substituted 4a,5-dihydroflavins (adducts), which on warming split homolytically, yielding a 1:1:1-mixture of 1,5-dihydroflavin/starting flavin/dimerized substrate after disproportionation and dimerisation, resp.In the case of unblocked substrates these adducts are not UV-detectable even at -80 °C but split heterolytically, yielding 1,5-dihydroflavin and oxidized substrate in a 1:1-ratio.



Nanomaterials ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 1716
Author(s):  
Nisha Shukla ◽  
Zachary Blonder ◽  
Andrew J. Gellman

The surfaces of chemically synthesized spherical gold NPs (Au-NPs) have been modified using chiral L- or D-penicillamine (Pen) in order to impart enantioselective adsorption properties. These chiral Au-NPs have been used to demonstrate enantioselective adsorption of racemic propylene oxide (PO) from aqueous solution. In the past we have studied enantioselective adsorption of racemic PO on L- or D-cysteine (Cys)-coated Au-NPs. This prior work suggested that adsorption of PO on Cys-coated Au-NPs equilibrates within an hour. In this work, we have studied the effect of time on the enantioselective adsorption of racemic PO from solution onto chiral Pen/Au-NPs. Enantioselective adsorption of PO on chiral Pen/Au-NPs is time-dependent but reaches a steady state after ~18 h at room temperature. More importantly, L- or D-Pen/Au-NPs are shown to adsorb R- or S-PO enantiospecifically and to separate the two PO enantiomers from racemic mixtures of RS-PO.



1991 ◽  
Vol 228 ◽  
Author(s):  
H. Luo ◽  
N. Samarth ◽  
J. K. Furdyna ◽  
H. Jeon ◽  
J. Ding ◽  
...  

ABSTRACTSuperlattices and quantum wells of Znl-xCdxSe/ZnSe, and heterostructures based on ZnSe/CdSe digital alloys have been grown by molecular beam epitaxy (MBE). Their optical properties were studied with particular emphasis on excitonic absorption and photopumped stimulated emission. Excitonic absorption is easily observable up to 400 K, and is characterized by extremely large absorption coefficients (α = 2×105cm−1). Optically pumped lasing action is obtained at room temperature with a typical threshold intensity of 100 kW/cm2. The lasing mechanism in these II-VI quantum wells appears to be quite different from that in the better studied III-V materials: in our case, the onset of stimulated emission occurs before the saturation of the excitonic absorption, and the stimulated emission occurs at an energy lower than that of the excitonic absorption.



2017 ◽  
Vol 49 (2) ◽  
pp. 167-174 ◽  
Author(s):  
Milica Petrovic ◽  
Martina Gilic ◽  
Jovana Cirkovic ◽  
Maja Romcevic ◽  
Nebojsa Romcevic ◽  
...  

Copper selenide thin films of three different thicknesses have been prepared by vacuum evaporation method on a glass substrate at room temperature. The optical properties of the films were investigated by UV-VIS-NIR spectroscopy and photoluminescence spectroscopy. Surface morphology was investigated by field-emission scanning electron microscopy. Copper selenide exhibits both direct and indirect transitions. The band gap for direct transition is found to be ~2.7 eV and that for indirect transition it is ~1.70 eV. Photoluminescence spectra of copper selenide thin films have also been analyzed, which show emission peaks at 530, 550, and 760 nm. The latter corresponds to indirect transition in investigated material.



1994 ◽  
Vol 358 ◽  
Author(s):  
B.O. Dabbousi ◽  
O. Onitsuka ◽  
M.F. Rubner ◽  
M.G. Bawendi

ABSTRACTWe obtain spectrally narrow (FWHM < 40 nm) electroluminescence from nearly monodisperse CdSe nanocrystallites (quantum dots) incorporated into thin films of polyvinyl carbazole (PVK) and an oxadiazole derivative (PBD) sandwiched between aluminum and ITO electrodes. The electroluminescence and photoluminescence spectra are nearly identical at room temperature and are tunable from ∼530 nm to ∼650 nm by varying the size of the dots. Voltage studies at 77K indicate that while only the dots electroluminesce at the lower voltages, both the dots and the PVK matrix electroluminesce at higher applied voltages. Variable temperature studies indicate that the electroluminescence efficiency increases substantially as the films are cooled down to cryogenic temperatures.



2016 ◽  
Vol 364 ◽  
pp. 235-240 ◽  
Author(s):  
Nataliya Kalashnyk ◽  
Hocine Khemliche ◽  
Philippe Roncin


Sign in / Sign up

Export Citation Format

Share Document