stereoselective epoxidation
Recently Published Documents


TOTAL DOCUMENTS

173
(FIVE YEARS 11)

H-INDEX

26
(FIVE YEARS 2)

Antioxidants ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 1888
Author(s):  
Alejandro González-Benjumea ◽  
Dolores Linde ◽  
Juan Carro ◽  
René Ullrich ◽  
Martin Hofrichter ◽  
...  

Epoxide metabolites from n-3 and n-6 polyunsaturated fatty acids arouse interest thanks to their physiological and pharmacological activities. Their chemical synthesis has significant drawbacks, and enzymes emerge as an alternative with potentially higher selectivity and greener nature. Conversion of eleven eicosanoid, docosanoid, and other n-3/n-6 fatty acids into mono-epoxides by fungal unspecific peroxygenases (UPOs) is investigated, with emphasis on the Agrocybe aegerita (AaeUPO) and Collariella virescens (rCviUPO) enzymes. GC-MS revealed the strict regioselectivity of the n-3 and n-6 reactions with AaeUPO and rCviUPO, respectively, yielding 91%-quantitative conversion into mono-epoxides at the last double bond. Then, six of these mono-epoxides were obtained at mg-scale, purified and further structurally characterized by 1H, 13C and HMBC NMR. Moreover, chiral HPLC showed that the n-3 epoxides were also formed (by AaeUPO) with total S/R enantioselectivity (ee > 99%) while the n-6 epoxides (from rCviUPO reactions) were formed in nearly racemic mixtures. The high regio- and enantioselectivity of several of these reactions unveils the synthetic utility of fungal peroxygenases in fatty acid epoxidation.


2021 ◽  
Vol 17 ◽  
pp. 2781-2786
Author(s):  
Lukáš Ďurina ◽  
Anna Ďurinová ◽  
František Trejtnar ◽  
Ľuboš Janotka ◽  
Lucia Messingerová ◽  
...  

A new highly diastereoselective synthesis of the polyhydroxylated pyrrolidine alkaloid (±)-codonopsinol B and its N-nor-methyl analogue, starting from achiral materials, is presented. The strategy relies on the trans-stereoselective epoxidation of 2,3-dihydroisoxazole with in situ-generated DMDO, the syn-selective α-chelation-controlled addition of vinyl-MgBr/CeCl3 to the isoxazolidine-4,5-diol intermediate, and the substrate-directed epoxidation of the terminal double bond of the corresponding γ-amino-α,β-diol with aqueous hydrogen peroxide catalyzed by phosphotungstic heteropoly acid. Each of the key reactions proceeded with an excellent diastereoselectivity (dr > 95:5). (±)-Codonopsinol B was prepared in 10 steps with overall 8.4% yield. The antiproliferative effect of (±)-codonopsinol B and its N-nor-methyl analogue was evaluated using several cell line models.


Synlett ◽  
2021 ◽  
Author(s):  
Shuhei Hori ◽  
Sho Ishida ◽  
Go Ito ◽  
Koji Sugiyama ◽  
Chiharu Yuki ◽  
...  

4,5,6,7-Tetrahydroisobenzofurans, corresponding to the AC(D)E ring structure of viridin and equipped with required substituents on the A-ring, were synthesized via the Diels-Alder adduct of a furan derivative and maleic anhydride with high regio- and stereoselectivities. The key steps of this work include the regioselective opening of the tetrahydrofuran, stereoselective epoxidation, and AlMe3-mediated regioselective epoxide opening followed by stereoselective C-methylation.


2020 ◽  
Author(s):  
Paul Scesa ◽  
Lyndon M. West ◽  
Stephane Roche

Macrocyclic furanobutenolide-derived cembranoids (FBCs) are the biosynthetic precursors to a wide variety of highly congested and oxygenated polycyclic (nor)diterpenes (<i>e.g.</i> plumarellide, verrillin or bielschowskysin). These architecturally complex metabolites are thought to originate from site-selective oxidation of the macrocycles’ backbone and a series of intricate transannular reactions. Yet the development of a common biomimetic route has been hampered by a lack of synthetic methods for the pivotal furan dearomatization in a regio- and stereoselective manner. To address these shortcomings, a concise strategy of chemo- and stereoselective epoxidation followed by a kinetically-controlled furan dearomatization is reported. The surprising switch of facial <i>a</i>:<i>b</i>-discrimination observed in the epoxidations of the most strained <i>E</i>-acerosolide <i>versus</i> <i>E</i>-deoxypukalide and <i>E</i>-bipinnatin J derived macrocycles has been rationalized by the 3D-conformational preferences of the macrocyclic scaffolds. The downstream functionalization of FBC-macrocycles was also studied, and how the C-7 epoxide configuration was retentively translated to the C-3 stereogenicity in dearomatized products under kinetic control to secure the requisite (3<i>S</i>,7<i>S</i>,8<i>S</i>)-configurations for the bielschowskysin synthesis. Unlike previously speculated, our results suggest that the most strained FBC-macrocycles bearing a <i>E</i>-(D<sup>7,8</sup>)-alkene moiety may stand as the true biosynthetic precursors to bielschowskysin and several other polycyclic natural products of this class.


2020 ◽  
Author(s):  
Paul Scesa ◽  
Lyndon M. West ◽  
Stephane Roche

Macrocyclic furanobutenolide-derived cembranoids (FBCs) are the biosynthetic precursors to a wide variety of highly congested and oxygenated polycyclic (nor)diterpenes (<i>e.g.</i> plumarellide, verrillin or bielschowskysin). These architecturally complex metabolites are thought to originate from site-selective oxidation of the macrocycles’ backbone and a series of intricate transannular reactions. Yet the development of a common biomimetic route has been hampered by a lack of synthetic methods for the pivotal furan dearomatization in a regio- and stereoselective manner. To address these shortcomings, a concise strategy of chemo- and stereoselective epoxidation followed by a kinetically-controlled furan dearomatization is reported. The surprising switch of facial <i>a</i>:<i>b</i>-discrimination observed in the epoxidations of the most strained <i>E</i>-acerosolide <i>versus</i> <i>E</i>-deoxypukalide and <i>E</i>-bipinnatin J derived macrocycles has been rationalized by the 3D-conformational preferences of the macrocyclic scaffolds. The downstream functionalization of FBC-macrocycles was also studied, and how the C-7 epoxide configuration was retentively translated to the C-3 stereogenicity in dearomatized products under kinetic control to secure the requisite (3<i>S</i>,7<i>S</i>,8<i>S</i>)-configurations for the bielschowskysin synthesis. Unlike previously speculated, our results suggest that the most strained FBC-macrocycles bearing a <i>E</i>-(D<sup>7,8</sup>)-alkene moiety may stand as the true biosynthetic precursors to bielschowskysin and several other polycyclic natural products of this class.


ACS Catalysis ◽  
2020 ◽  
Vol 10 (22) ◽  
pp. 13584-13595
Author(s):  
Martí Municoy ◽  
Alejandro González-Benjumea ◽  
Juan Carro ◽  
Carmen Aranda ◽  
Dolores Linde ◽  
...  

Author(s):  
Abdul Rehman ◽  
Elena Russell ◽  
Faisal Saleem ◽  
Farhan Javed ◽  
Sajjad Ahmad ◽  
...  

Catalysts ◽  
2020 ◽  
Vol 10 (5) ◽  
pp. 474
Author(s):  
Mounir Raji ◽  
Tam Minh Le ◽  
Ferenc Fülöp ◽  
Zsolt Szakonyi

A library of pinane-based chiral aminodiols, derived from natural (−)-β-pinene, were prepared and applied as chiral catalysts in the addition of diethylzinc to aldehydes. (−)-β-Pinene was reacted to provide 3-methylenenopinone, followed by a reduction of the carbonyl function to give a key allylic alcohol intermediate. Stereoselective epoxidation of the latter and subsequent ring opening of the resulting oxirane with primary and secondary amines afforded aminodiols. The regioselectivity of the ring closure of the N-substituted secondary aminodiols with formaldehyde was examined and exclusive formation of oxazolidines was observed. Treatment of the allylic alcohol with benzyl bromide provided the corresponding O-benzyl derivative, which was transformed into O-benzyl aminodiols by aminolysis. Ring closure of the N-isopropyl aminodiol derivative with formaldehyde resulted in spirooxazolidine. The obtained potential catalysts were applied in the reaction of both aromatic and aliphatic aldehydes to diethylzinc providing moderate to good enantioselectivities (up to 87% ee). Through the use of molecular modeling at an ab initio level, this phenomenon was interpreted in terms of competing reaction pathways. Molecular modeling at the RHF/LANL2DZ level of theory was successfully applied for interpretation of the stereochemical outcome of the reactions leading to display excellent (R) enantioselectivity in the examined transformation.


Molecules ◽  
2019 ◽  
Vol 25 (1) ◽  
pp. 21 ◽  
Author(s):  
Fatima Zahra Bamou ◽  
Tam Minh Le ◽  
Bettina Volford ◽  
András Szekeres ◽  
Zsolt Szakonyi

A library of 1,2-aminoalcohol derivatives with a neoisopulegol-based octahydrobenzofuran core was developed and applied as chiral catalysts in the addition of diethylzinc to benzaldehyde. The allylic chlorination of (+)-neoisopulegol, derived from natural (–)-isopulegol followed by cyclization, gave the key methyleneoctahydrobenzofuran intermediate. The stereoselective epoxidation of the key intermediate and subsequent oxirane ring opening with primary amines afforded the required 1,2-aminoalcohols. The ring closure of the secondary amine analogues with formaldehyde provided spiro-oxazolidine ring systems. The dihydroxylation of the methylenetetrahydrofuran moiety with OsO4/NMO (4-methylmorpholine N-oxide) resulted in the formation of a neoisopulegol-based diol in a highly stereoselective reaction. The antimicrobial activity of both the aminoalcohol derivatives and the diol was also explored.


2019 ◽  
Vol 20 (16) ◽  
pp. 4050 ◽  
Author(s):  
Tam Minh Le ◽  
Tamás Szilasi ◽  
Bettina Volford ◽  
András Szekeres ◽  
Ferenc Fülöp ◽  
...  

A library of isopulegol-based bi-, tri- and tetrafunctional chiral ligands has been developed from commercially available (−)-isopulegol and applied as chiral catalysts in the addition of diethylzinc to benzaldehyde. Michael addition of primary amines towards α-methylene-γ-butyrolactone, followed by reduction, was accomplished to provide aminodiols in highly stereoselective transformations. Stereoselective epoxidation of (+)-neoisopulegol, derived from natural (−)-isopulegol, and subsequent oxirane ring opening with primary amines afforded aminodiols. The regioselective ring closure of N-substituted aminodiols with formaldehyde was also investigated. Hydroxylation of (+)-neoisopulegol resulted in diol, which was then transformed into aminotriols by aminolysis of its epoxides. Dihydroxylation of (+)-neoisopulegol or derivatives with OsO4/NMO gave neoisopulegol-based di-, tri- and tetraols in highly stereoselective reactions. The antimicrobial activity of aminodiol and aminotriol derivatives as well as di-, tri- and tetraols was also explored. In addition, structure–activity relationships were examined by assessing substituent effects on the aminodiol and aminotriol systems.


Sign in / Sign up

Export Citation Format

Share Document