NUMERICAL ANALYSIS OF FLOW BEHAVIOR IN GAS-LIQUID CYLINDRICAL CYCLONE (GLCC©*) SEPARATORS WITH INLET DESIGN MODIFICATIONS

2021 ◽  
pp. 1-27
Author(s):  
Srinivas Swaroop Kolla ◽  
Ram S. Mohan ◽  
Ovadia Shoham

Abstract The Gas-Liquid Cylindrical Cyclone (GLCC©*) is a simple, compact and low-cost separator, which provides an economically attractive alternative to conventional gravity-based separators over a wide range of applications. More than 6,500 GLCC©'s have been installed in the field to date around the world over the past 2 decades. The GLCC© inlet section design is a key parameter, which is crucial for its performance and proper operation. The flow behavior in the GLCC© body is highly dependent on the fluid velocities generated at the reduced area nozzle inlet. An earlier study (Kolla et al. [1]) recommended design modifications to the inlet section, based on safety and structural robustness. It is important to ensure that these proposed configuration modifications do not adversely affect the flow behavior at the inlet and the overall performance of the GLCC©. This paper presents a numerical study utilizing specific GLCC© field application working under 3 different case studies representing the flow entering the GLCC, separating light oil, steam flooded wells in Minas, Indonesia. Commercially available Computational Fluid Dynamics (CFD) software is utilized to analyze the hydrodynamics of flow with the proposed modifications of the inlet section for GLCC© field applications.

Author(s):  
Srinivas Swaroop Kolla ◽  
Ram S. Mohan ◽  
Ovadia Shoham

The Gas-Liquid Cylindrical Cyclone (GLCC©1) is a simple, compact and low-cost separator, which provides an economically attractive alternative to conventional gravity based separators over a wide range of applications. More than 6,500 GLCC©’s have been installed in the field to date around the world over the past 2 decades. The GLCC© inlet section design is a key parameter, which is crucial for its performance and proper operation. The flow behavior in the GLCC© body is highly dependent on the fluid velocities generated at the reduced area nozzle inlet. An earlier study (Kolla et al. [4]) recommended design modifications to the inlet section, based on safety and structural robustness. It is important to ensure that these proposed configuration modifications do not adversely affect the flow behavior at the inlet and the overall performance of the GLCC©. This study is carried out for a specific GLCC© field application, separating light oil, steam flooded wells in Minas, Indonesia. Computational Fluid Dynamics (CFD) software is used to analyze the hydrodynamics of flow with the proposed modifications of the inlet section for GLCC© field applications.


2017 ◽  
Vol 140 (5) ◽  
Author(s):  
Srinivas Swaroop Kolla ◽  
Ram S. Mohan ◽  
Ovadia Shoham

The gas–liquid cylindrical cyclone (GLCC) is a simple, compact, and low-cost separator, which provides an economically attractive alternative to conventional gravity-based separators over a wide range of applications. Over the past 22 years, more than 6500 GLCCs have been installed around the world by the petroleum and related industries. However, to date no systematic study has been carried out on its structural integrity. The GLCC inlet section design is a key parameter, which is crucial for its performance and proper operation. This paper presents finite element analysis simulation results aimed at investigating the effect of various parameters on the inlet section structural integrity. Finally, recommendations on design modifications are presented, directed at strengthening the inlet section.


Author(s):  
Srinivas Swaroop Kolla ◽  
Ram S. Mohan ◽  
Ovadia Shoham

The gas-liquid cylindrical cyclone (GLCC©) is a simple, compact and low-cost separator, which provides an economically attractive alternative to conventional gravity based separators over a wide range of applications. As shown in Figure 1, over the past 20 years more than 6,000 GLCC’s have been installed around the world by the Petroleum and related industries. However, to-date no systematic study has been carried out on its structural integrity. The GLCC inlet section design is a key parameter, which is crucial for its performance and proper operation. This paper presents Finite Element Analysis (FEA) simulation results aimed at investigating the effect of various parameters on the inlet section structural integrity. Finally, recommendations on design modifications are presented, directed at strengthening the inlet section.


2019 ◽  
Vol 142 (4) ◽  
Author(s):  
Srinivas Swaroop Kolla ◽  
Ram S. Mohan ◽  
Ovadia Shoham

Abstract The gas-liquid cylindrical cyclone (GLCC©, The University of Tulsa, 1994) is a simple, compact, and low-cost separator, which provides an economically attractive alternative to conventional gravity-based separators over a wide range of applications. The GLCC© inlet section design is a key parameter, which is crucial for its performance and proper operation. An in-depth evaluation of specific design modifications and their effect on safety and structural robustness are carried out in this study using finite element analysis (FEA). Fluid–structure interaction (FSI) analysis is also carried out using the results of computational fluid dynamics (CFD) aimed at investigating the effect of fluid flow on the inlet section structural integrity. The selected design modifications are based on feasibility of GLCC© manufacturing and assembly for field applications. Different case studies incorporating sustained GLCC© internal pressure, dead weight loading, forces generated because of slug flow and high temperatures are analyzed and presented in this paper. The concept of holes cut out in baffle has been effective with no stresses or deformation in the baffle area. FSI simulation of slug flow has proved that FEA direct loading case studies are far more conservative.


Author(s):  
Karthik Nithyanandam ◽  
Ranga Pitchumani

Dye sensitized solar cells (DSC) are an attractive alternative to the conventional photovoltaic cell because of their low cost electricity production from solar radiation. The advantages of a DSC include the ability to generate power without emitting pollutants and requiring no fuel. While modeling of the physical and transport phenomena in DSC has been widely reported in the literature, a thorough analysis to quantitatively determine the optimal design and operating configuration in installation is lacking. The present study incorporates a model of the DSC coupled with a model to predict global irradiance on a terrestrial surface to analyze the hourly, daily, monthly and annual performance of a DSC installation over a wide range of design and operating parameters. Optimum design and operating parameters are derived from the analysis.


Author(s):  
Srinivas Swaroop Kolla ◽  
Ram S. Mohan ◽  
Ovadia Shoham

The Gas-Liquid Cylindrical Cyclone (GLCC©1) is a simple, compact and low-cost separator, which provides an economically attractive alternative to conventional gravity based separators over a wide range of applications. The GLCC© inlet section design is a key parameter, which is crucial for its performance and proper operation. An in-depth evaluation of specific design modifications and their effectiveness on safety and structural robustness are carried out in this study using Finite Element Analysis. Fluid-Structure Interaction (FSI) analysis is also carried out utilizing the results of Computational Fluid Dynamics (CFD) aimed at investigating the effect of fluid flow on the inlet section structural integrity. The selected design modifications are based on feasibility of GLCC© manufacturing and assembly for field applications. Different case studies incorporating sustained GLCC© internal pressure, dead weight loading, forces generated because of slug flow and high temperatures are evaluated and presented. The concept of holes cutout in baffle have been proven effective with no stresses or deformation in the baffle area. FSI simulation of slug flow have proved that FEA direct loading case studies are far more conservative.


2019 ◽  
Vol 88 (1) ◽  
pp. 11101 ◽  
Author(s):  
Mahdi Benzema ◽  
Youb Khaled Benkahla ◽  
Ahlem Boudiaf ◽  
Sief-Eddine Ouyahia ◽  
Mohammed El Ganaoui

Numerical study for the effect of an external magnetic field on the mixed convection of Al2O3–water Newtonian nanofluid in a right-angle vented trapezoidal cavity was performed using the finite volume method. The non-homogeneous Buongiorno model is applied for numerical description of the dynamic phenomena inside the cavity. The nanofluid, with low temperature and high concentration, enters the cavity through the upper open border, and is evacuated through opening placed at the right end of the bottom wall. The cavity is heated from the inclined wall, while the remainder walls are adiabatic and impermeable to both the base fluid and nanoparticles. After validation of the model, the analysis was carried out for a wide range of Hartmann number (0 ≼ Ha ≼ 100) and nanoparticles volume fraction (0 ≼ ϕ0 ≼ 0.06). The flow behavior as well as the temperature and nanoparticles distribution shows a particular sensitivity to the variations of both the Hartmann number and the nanofluid concentration. The domination of conduction mechanism at high Hartmann numbers reflects the significant effect of Brownian diffusion which tends to uniform the distribution of nanoparticles in the domain. The average Nusselt number which increases with the nanoparticles addition, depends strongly on the Hartmann number. Finally, a correlation predicting the average Nusselt number within such geometry as a function of the considered parameters is proposed.


2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Despina P. Kalogianni

AbstractLiquid biopsy is considered as the most attractive alternative to traditional tissue biopsies. The major advantages of this approach lie in the non-invasive procedure, the rapidness of sample collection and the potential for early cancer diagnosis and real-time monitoring of the disease and the treatment response. Nanotechnology has dynamically emerged in a wide range of applications in the field of liquid biopsy. The benefits of using nanomaterials for biosensing include high sensitivity and detectability, simplicity in many cases, rapid analysis, the low cost of the analysis and the potential for portability and personalized medicine. The present paper reports on the nanomaterial-based methods and biosensors that have been developed for liquid biopsy applications. Most of the nanomaterials used exhibit great analytical performance; moreover, extremely low limits of detection have been achieved for all studied targets. This review will provide scientists with a comprehensive overview of all the nanomaterials and techniques that have been developed for liquid biopsy applications. A comparison of the developed methods in terms of detectability, dynamic range, time-length of the analysis and multiplicity, is also provided.


1995 ◽  
Vol 377 ◽  
Author(s):  
W. S. Hong ◽  
H. S. Cho ◽  
V. Perez-Mendez ◽  
W. G. Gong

ABSTRACTThin semiconducting films of hydrogenated amorphous silicon (a-Si:H) and its carbon alloy (a-Si:C:H) were applied to gas microstrip detectors in order to control gain instabilities due to charges on the substrate. Thin (∼100 nm) layers of a-Si:H or p-doped a-Si:C:H were placed either over or under the electrodes using the plasma enhanced chemical vapor deposition (PECVD) technique to provide the substrate with a suitable surface conductivity. By changing the carbon content and boron doping density, the sheet resistance of the a-Si:C:H coating could be successfully controlled in the range of 1012 ∼ 1017 μ/□, and the light sensitivity, which causes the resistivity to vary with ambient light conditions, was minimized. An avalanche gain of 5000 and energy resolution of 20% FWHM were achieved and the gain remained constant over a week of operation. A-Si:C:H film is an attractive alternative to ion-implanted or semiconducting glass due to the wide range of resistivities possible and the feasibility of making deposits over a large area at low cost.


Author(s):  
Elahe Mirabi ◽  
Nasrollahi Nazanin

<p>Designing urban facades is considered as a major factor influencing issues<br />such as natural ventilation of buildings and urban areas, radiations in the<br />urban canyon for designing low-energy buildings, cooling demand for<br />buildings in urban area, and thermal comfort in urban streets. However, so<br />far, most studies on urban topics have been focused on flat facades<br />without details of urban layouts. Hence, the effect of urban facades with<br />details such as the balcony and corbelling on thermal comfort conditions<br />and air flow behavior are discussed in this literature review. <strong>Aim</strong>: This<br />study was carried out to investigate the effective factors of urban facades,<br />including the effects of building configuration, geometry and urban<br />canyon’s orientation. <strong>Methodology and Results</strong>: According to the results,<br />the air flow behavior is affected by a wide range of factors such as wind<br />conditions, urban geometry and wind direction. Urban façade geometry<br />can change outdoor air flow pattern, thermal comfort and solar access.<br /><strong>Conclusion, significance and impact study</strong>: In particular, the geometry of<br />the facade, such as indentation and protrusion, has a significant effect on<br />the air flow and thermal behavior in urban facades and can enhance<br />outdoor comfort conditions. Also, Alternation in façade geometry can<br />affect pedestrians' comfort and buildings energy demands.</p>


Sign in / Sign up

Export Citation Format

Share Document