schistosoma mekongi
Recently Published Documents


TOTAL DOCUMENTS

67
(FIVE YEARS 15)

H-INDEX

15
(FIVE YEARS 2)

Author(s):  
Eva Janoušková ◽  
Jessica Clark ◽  
Olumayowa Kajero ◽  
Sergi Alonso ◽  
Poppy H. L. Lamberton ◽  
...  

Schistosomiasis is a parasitic disease acquired through contact with contaminated freshwater. The definitive hosts are terrestrial mammals, including humans, with some Schistosoma species crossing the animal-human boundary through zoonotic transmission. An estimated 12 million people live at risk of zoonotic schistosomiasis caused by Schistosoma japonicum and Schistosoma mekongi, largely in the World Health Organization’s Western Pacific Region and in Indonesia. Mathematical models have played a vital role in our understanding of the biology, transmission, and impact of intervention strategies, however, these have mostly focused on non-zoonotic Schistosoma species. Whilst these non-zoonotic-based models capture some aspects of zoonotic schistosomiasis transmission dynamics, the commonly-used frameworks are yet to adequately capture the complex epi-ecology of multi-host zoonotic transmission. However, overcoming these knowledge gaps goes beyond transmission dynamics modelling. To improve model utility and enhance zoonotic schistosomiasis control programmes, we highlight three pillars that we believe are vital to sustainable interventions at the implementation (community) and policy-level, and discuss the pillars in the context of a One-Health approach, recognising the interconnection between humans, animals and their shared environment. These pillars are: (1) human and animal epi-ecological understanding; (2) economic considerations (such as treatment costs and animal losses); and (3) sociological understanding, including inter- and intra-human and animal interactions.


2021 ◽  
Vol 15 (9) ◽  
pp. e0009706
Author(s):  
Peerut Chienwichai ◽  
Phornpimon Tipthara ◽  
Joel Tarning ◽  
Yanin Limpanont ◽  
Phiraphol Chusongsang ◽  
...  

Background Mekong schistosomiasis is a parasitic disease caused by the blood-dwelling fluke Schistosoma mekongi. This disease contributes to human morbidity and mortality in the Mekong region, posing a public health threat to people in the area. Currently, praziquantel (PZQ) is the drug of choice for the treatment of Mekong schistosomiasis. However, the molecular mechanisms of PZQ action remain unclear, and Schistosoma PZQ resistance has been reported occasionally. Through this research, we aimed to use a metabolomic approach to identify the potentially altered metabolic pathways in S. mekongi associated with PZQ treatment. Methodology/Principal findings Adult stage S. mekongi were treated with 0, 20, 40, or 100 μg/mL PZQ in vitro. After an hour of exposure to PZQ, schistosome metabolites were extracted and studied with mass spectrometry. The metabolomic data for the treatment groups were analyzed with the XCMS online platform and compared with data for the no treatment group. After low, medium (IC50), and high doses of PZQ, we found changes in 1,007 metabolites, of which phosphatidylserine and anandamide were the major differential metabolites by multivariate and pairwise analysis. In the pathway analysis, arachidonic acid metabolism was found to be altered following PZQ treatment, indicating that this pathway may be affected by the drug and potentially considered as a novel target for anti-schistosomiasis drug development. Conclusions/Significance Our findings suggest that arachidonic acid metabolism is a possible target in the parasiticidal effects of PZQ against S. mekongi. Identifying potential targets of the effective drug PZQ provides an interesting viewpoint for the discovery and development of new agents that could enhance the prevention and treatment of schistosomiasis.


Biomolecules ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 559
Author(s):  
Tipparat Thiangtrongjit ◽  
Nattapon Simanon ◽  
Poom Adisakwattana ◽  
Yanin Limpanont ◽  
Phiraphol Chusongsang ◽  
...  

Schistosoma mekongi is found in the lower Mekong river region and causes schistosomiasis. Low sensitivity of diagnosis and development of drug resistance are problems to eliminate this disease. To develop novel therapies and diagnostics for S. mekongi, the basic molecular biology of this pathogen needs to be explored. Bioactive peptides have been reported in several worms and play important roles in biological functions. Limited information is available on the S. mekongi peptidome. Therefore, this study aimed to identify S. mekongi peptides using in silico transcriptome mining and mass spectrometry approaches. Schistosoma peptide components were identified in adult worms, eggs, and infected mouse sera. Thirteen neuropeptide families were identified using in silico predictions from in-house transcriptomic databases of adult S. mekongi worms. Using mass spectrometry approaches, 118 peptides (from 54 precursor proteins) and 194 peptides (from 86 precursor proteins) were identified from adult worms and eggs, respectively. Importantly, eight unique peptides of the S. mekongi ubiquitin thioesterase, trabid, were identified in infected mouse sera 14, 28, and 56 days after infection. This protein may be a potential target for diagnosis of schistosomiasis. The S. mekongi peptide profiles determined in this study could be used for further drug and diagnostic development.


2020 ◽  
Vol 9 (1) ◽  
Author(s):  
Anousin Homsana ◽  
Peter Odermatt ◽  
Phonesavanh Southisavath ◽  
Aya Yajima ◽  
Somphou Sayasone

2020 ◽  
Vol 2020 ◽  
pp. 1-11 ◽  
Author(s):  
Pedro Fernández-Soto ◽  
Catalina Avendaño ◽  
Anna Sala-Vizcaíno ◽  
Beatriz Crego-Vicente ◽  
Begoña Febrer-Sendra ◽  
...  

Schistosomiasis is considered a neglected parasitic disease. Around 280,000 people die from it annually, and more than 779 million people are at risk of getting infected. The schistosome species which infect human beings are Schistosoma mansoni, Schistosoma haematobium, Schistosoma intercalatum, Schistosoma japonicum, Schistosoma guineensis, and Schistosoma mekongi. This disease is also of veterinary significance; the most important species being Schistosoma bovis since it causes the disease in around 160 million livestock in Africa and Asia. This work was aimed at designing and developing a genus-specific loop-mediated isothermal amplification (LAMP) method for detecting the most important schistosome species affecting humans and for the species-specific detection of S. bovis. Bioinformatics tools were used for primer design, and the LAMP method was standardised for detecting the ITS-1 region from S. intercalatum, S. haematobium, S. mansoni, S. japonicum, and S. bovis DNA (generic test) and the NADH 1 gene for specifically detecting S. bovis (at different DNA concentrations). Detection limits achieved were 1 pg DNA for S. mansoni, 0.1 pg for S. haematobium, 1 pg for S. intercalatum, and 10 pg for S. bovis. No amplification for S. japonicum DNA was obtained. The LAMP designed for the amplification of S. bovis NADH-1 worked specifically for this species, and no other DNA from other schistosome species included in the study was amplified. Two highly sensitive LAMP methods for detecting different Schistosoma species important for human and veterinary health were standardised. These methods could be very useful for the diagnosis and surveillance of schistosome infections.


Pathogens ◽  
2020 ◽  
Vol 9 (6) ◽  
pp. 417
Author(s):  
Peerut Chienwichai ◽  
Sumate Ampawong ◽  
Poom Adisakwattana ◽  
Tipparat Thiangtrongjit ◽  
Yanin Limpanont ◽  
...  

Schistosoma mekongi causes schistosomiasis in southeast Asia, against which praziquantel (PZQ) is the only treatment option. PZQ resistance has been reported, thus increasing the requirement to understand mechanism of PZQ. Herein, this study aimed to assess differences in proteome and phosphoproteome of S. mekongi after PZQ treatment for elucidating its action. Furthermore, key kinases related to PZQ effects were predicted to identify alternative targets for novel drug development. Proteomes of S. mekongi were profiled after PZQ treatment at half maximal inhibitory concentration and compared with untreated worms. A total of 144 proteins were differentially expressed after treatment. In parallel, immunohistochemistry indicated a reduction of phosphorylation, with 43 phosphoproteins showing reduced phosphorylation, as identified by phosphoproteomic approach. Pathway analysis of mass spectrometric data showed that calcium homeostasis, worm antigen, and oxidative stress pathways were influenced by PZQ treatment. Interestingly, two novel mechanisms related to protein folding and proteolysis through endoplasmic reticulum-associated degradation pathways were indicated as a parasiticidal mechanism of PZQ. According to kinase–substrate predictions with bioinformatic tools, Src kinase was highlighted as the major kinase related to the alteration of phosphorylation by PZQ. Interfering with these pathways or applying Src kinase inhibitors could be alternative approaches for further antischistosomal drug development.


Acta Tropica ◽  
2020 ◽  
Vol 204 ◽  
pp. 105324
Author(s):  
Somphou Sayasone ◽  
Kerstin Kling ◽  
Phonesavanh Southisavath ◽  
Jürg Utzinger ◽  
Rasphone Oroth ◽  
...  

Acta Tropica ◽  
2020 ◽  
Vol 202 ◽  
pp. 105247
Author(s):  
Onrapak Reamtong ◽  
Nattapon Simanon ◽  
Tipparat Thiangtrongjit ◽  
Yanin Limpanont ◽  
Phiraphol Chusongsang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document