scholarly journals Exploring the Effects of Active Magnetic Drag in a Gener\al Circulation Model of the Ultrahot Jupiter WASP-76b

2021 ◽  
Vol 163 (1) ◽  
pp. 35
Author(s):  
Hayley Beltz ◽  
Emily Rauscher ◽  
Michael T. Roman ◽  
Abigail Guilliat

Abstract Ultrahot Jupiters represent an exciting avenue for testing extreme physics and observing atmospheric circulation regimes not found in our solar system. Their high temperatures result in thermally ionized particles embedded in atmospheric winds interacting with the planet’s interior magnetic field by generating current and experiencing bulk Lorentz force drag. Previous treatments of magnetic drag in 3D general circulation models (GCMs) of ultrahot Jupiters have mostly been uniform drag timescales applied evenly throughout the planet, which neglects the strong spatial dependence of these magnetic effects. In this work, we apply our locally calculated active magnetic drag treatment in a GCM of the planet WASP-76b. We find the effects of this treatment to be most pronounced in the planet’s upper atmosphere, where strong differences between the day and night side circulation are present. These circulation effects alter the resulting phase curves by reducing the hot spot offset and increasing the day–night flux contrast. We compare our models to Spitzer phase curves, which imply a magnetic field of at least 3 G for the planet. We additionally contrast our results to uniform drag timescale models. This work highlights the need for more careful treatment of magnetic effects in atmospheric models of hot gas giants.

2010 ◽  
Vol 67 (6) ◽  
pp. 1983-1995 ◽  
Author(s):  
Steven C. Hardiman ◽  
David G. Andrews ◽  
Andy A. White ◽  
Neal Butchart ◽  
Ian Edmond

Abstract Transformed Eulerian mean (TEM) equations and Eliassen–Palm (EP) flux diagnostics are presented for the general nonhydrostatic, fully compressible, deep atmosphere formulation of the primitive equations in spherical geometric coordinates. The TEM equations are applied to a general circulation model (GCM) based on these general primitive equations. It is demonstrated that a naive application in this model of the widely used approximations to the EP diagnostics, valid for the hydrostatic primitive equations using log-pressure as a vertical coordinate and presented, for example, by Andrews et al. in 1987 can lead to misleading features in these diagnostics. These features can be of the same order of magnitude as the diagnostics themselves throughout the winter stratosphere. Similar conclusions are found to hold for “downward control” calculations. The reasons are traced to the change of vertical coordinate from geometric height to log-pressure. Implications for the modeling community, including comparison of model output with that from reanalysis products available only on pressure surfaces, are discussed.


2018 ◽  
Vol 22 (10) ◽  
pp. 1-22 ◽  
Author(s):  
Andrew R. Bock ◽  
Lauren E. Hay ◽  
Gregory J. McCabe ◽  
Steven L. Markstrom ◽  
R. Dwight Atkinson

Abstract The accuracy of statistically downscaled (SD) general circulation model (GCM) simulations of monthly surface climate for historical conditions (1950–2005) was assessed for the conterminous United States (CONUS). The SD monthly precipitation (PPT) and temperature (TAVE) from 95 GCMs from phases 3 and 5 of the Coupled Model Intercomparison Project (CMIP3 and CMIP5) were used as inputs to a monthly water balance model (MWBM). Distributions of MWBM input (PPT and TAVE) and output [runoff (RUN)] variables derived from gridded station data (GSD) and historical SD climate were compared using the Kolmogorov–Smirnov (KS) test For all three variables considered, the KS test results showed that variables simulated using CMIP5 generally are more reliable than those derived from CMIP3, likely due to improvements in PPT simulations. At most locations across the CONUS, the largest differences between GSD and SD PPT and RUN occurred in the lowest part of the distributions (i.e., low-flow RUN and low-magnitude PPT). Results indicate that for the majority of the CONUS, there are downscaled GCMs that can reliably simulate historical climatic conditions. But, in some geographic locations, none of the SD GCMs replicated historical conditions for two of the three variables (PPT and RUN) based on the KS test, with a significance level of 0.05. In these locations, improved GCM simulations of PPT are needed to more reliably estimate components of the hydrologic cycle. Simple metrics and statistical tests, such as those described here, can provide an initial set of criteria to help simplify GCM selection.


2015 ◽  
Vol 15 (14) ◽  
pp. 7797-7818 ◽  
Author(s):  
N. P. Hindley ◽  
C. J. Wright ◽  
N. D. Smith ◽  
N. J. Mitchell

Abstract. Nearly all general circulation models significantly fail to reproduce the observed behaviour of the southern wintertime polar vortex. It has been suggested that these biases result from an underestimation of gravity wave drag on the atmosphere at latitudes near 60° S, especially around the "hot spot" of intense gravity wave fluxes above the mountainous Southern Andes and Antarctic peninsula. Here, we use Global Positioning System radio occultation (GPS-RO) data from the COSMIC satellite constellation to determine the properties of gravity waves in the hot spot and beyond. We show considerable southward propagation to latitudes near 60° S of waves apparently generated over the southern Andes. We propose that this propagation may account for much of the wave drag missing from the models. Furthermore, there is a long leeward region of increased gravity wave energy that sweeps eastwards from the mountains over the Southern Ocean. Despite its striking nature, the source of this region has historically proved difficult to determine. Our observations suggest that this region includes both waves generated locally and orographic waves advected downwind from the hot spot. We describe and use a new wavelet-based analysis technique for the quantitative identification of individual waves from COSMIC temperature profiles. This analysis reveals different geographical regimes of wave amplitude and short-timescale variability in the wave field over the Southern Ocean. Finally, we use the increased numbers of closely spaced pairs of profiles from the deployment phase of the COSMIC constellation in 2006 to make estimates of gravity wave horizontal wavelengths. We show that, given sufficient observations, GPS-RO can produce physically reasonable estimates of stratospheric gravity wave momentum flux in the hot spot that are consistent with measurements made by other techniques. We discuss our results in the context of previous satellite and modelling studies and explain how they advance our understanding of the nature and origins of waves in the southern stratosphere.


2014 ◽  
Vol 27 (24) ◽  
pp. 9197-9213 ◽  
Author(s):  
Michael Horn ◽  
Kevin Walsh ◽  
Ming Zhao ◽  
Suzana J. Camargo ◽  
Enrico Scoccimarro ◽  
...  

Abstract Future tropical cyclone activity is a topic of great scientific and societal interest. In the absence of a climate theory of tropical cyclogenesis, general circulation models are the primary tool available for investigating the issue. However, the identification of tropical cyclones in model data at moderate resolution is complex, and numerous schemes have been developed for their detection. The influence of different tracking schemes on detected tropical cyclone activity and responses in the Hurricane Working Group experiments is examined herein. These are idealized atmospheric general circulation model experiments aimed at determining and distinguishing the effects of increased sea surface temperature and other increased CO2 effects on tropical cyclone activity. Two tracking schemes are applied to these data and the tracks provided by each modeling group are analyzed. The results herein indicate moderate agreement between the different tracking methods, with some models and experiments showing better agreement across schemes than others. When comparing responses between experiments, it is found that much of the disagreement between schemes is due to differences in duration, wind speed, and formation-latitude thresholds. After homogenization in these thresholds, agreement between different tracking methods is improved. However, much disagreement remains, accountable for by more fundamental differences between the tracking schemes. The results indicate that sensitivity testing and selection of objective thresholds are the key factors in obtaining meaningful, reproducible results when tracking tropical cyclones in climate model data at these resolutions, but that more fundamental differences between tracking methods can also have a significant impact on the responses in activity detected.


2019 ◽  
Vol 49 (11) ◽  
pp. 2815-2827
Author(s):  
Shengpeng Wang ◽  
Zhao Jing ◽  
Qiuying Zhang ◽  
Ping Chang ◽  
Zhaohui Chen ◽  
...  

AbstractIn this study, the global eddy kinetic energy (EKE) budget in horizontal wavenumber space is analyzed based on 1/10° ocean general circulation model simulations. In both the tropical and midlatitude regions, the barotropic energy conversion from background flow to eddies is positive throughout the wavenumber space and generally peaks at the scale (Le) where EKE reaches its maximum. The baroclinic energy conversion is more pronounced at midlatitudes. It exhibits a dipolar structure with positive and negative values at scales smaller and larger than Le, respectively. Surface wind power on geostrophic flow results in a significant EKE loss around Le but deposits energy at larger scales. The interior viscous dissipation and bottom drag inferred from the pressure flux convergence act as EKE sink terms. The latter is most efficient at Le while the former is more dominant at smaller scales. There is an evident mismatch between EKE generation and dissipation in the spectral space especially at the midlatitudes. This is reconciled by a dominant forward energy cascade on the equator and a dominant inverse energy cascade at the midlatitudes.


Water ◽  
2018 ◽  
Vol 10 (12) ◽  
pp. 1793 ◽  
Author(s):  
Najeebullah Khan ◽  
Shamsuddin Shahid ◽  
Kamal Ahmed ◽  
Tarmizi Ismail ◽  
Nadeem Nawaz ◽  
...  

The performance of general circulation models (GCMs) in a region are generally assessed according to their capability to simulate historical temperature and precipitation of the region. The performance of 31 GCMs of the Coupled Model Intercomparison Project Phase 5 (CMIP5) is evaluated in this study to identify a suitable ensemble for daily maximum, minimum temperature and precipitation for Pakistan using multiple sets of gridded data, namely: Asian Precipitation–Highly-Resolved Observational Data Integration Towards Evaluation (APHRODITE), Berkeley Earth Surface Temperature (BEST), Princeton Global Meteorological Forcing (PGF) and Climate Prediction Centre (CPC) data. An entropy-based robust feature selection approach known as symmetrical uncertainty (SU) is used for the ranking of GCM. It is known from the results of this study that the spatial distribution of best-ranked GCMs varies for different sets of gridded data. The performance of GCMs is also found to vary for both temperatures and precipitation. The Commonwealth Scientific and Industrial Research Organization, Australia (CSIRO)-Mk3-6-0 and Max Planck Institute (MPI)-ESM-LR perform well for temperature while EC-Earth and MIROC5 perform well for precipitation. A trade-off is formulated to select the common GCMs for different climatic variables and gridded data sets, which identify six GCMs, namely: ACCESS1-3, CESM1-BGC, CMCC-CM, HadGEM2-CC, HadGEM2-ES and MIROC5 for the reliable projection of temperature and precipitation of Pakistan.


Author(s):  
Daisuke Matsuoka ◽  
Fumiaki Araki ◽  
Hideharu Sasaki

Numerical study of ocean eddies has been carried out by using high-resolution ocean general circulation models. In order to understand ocean eddies from the large volume data produced by simulations, visualizing only eddy distribution at each time step is insufficient; time-variations in eddy events and phenomena must also be considered. However, existing methods cannot precisely find and track eddy events such as amalgamation and bifurcation. In this study, we propose an original approach for eddy detection, tracking, and event visualization based on an eddy classification system. The proposed method detects streams and currents as well as eddies, and it classifies discovered eddies into several categories using the additional stream and current information. By tracking how the classified eddies vary over time, detecting events such as eddy amalgamation and bifurcation as well as the interaction between eddies and ocean currents becomes achievable. We adopt the proposed method for two ocean areas in which strong ocean currents exist as case studies. We visualize the detected eddies and events in a time series of images, allowing us to acquire an intuitive understanding of a region of interest concealed in a high-resolution data set. Furthermore, our proposed method succeeded in clarifying the occurrence place and seasonality of each type of eddy event.


A model is being developed for tropical air-sea interaction studies that is intermediate in complexity between the large coupled general circulation models (GCMS) that are coming into use, and the simple two-level models with which pioneering El Nino Southern Oscillation studies were done. The model consists of a stripped-down tropical Pacific Ocean GCM, coupled to an atmospheric model that is sufficiently simple that steady-state solutions may be found for low-level flow and surface stress, given oceanic boundary conditions. This permits examination of the nature of interannual coupled oscillations in the absence of atmospheric noise. In preliminary tests of the model the coupled system is found to undergo a Hopf bifurcation as certain parameters are varied, giving rise to sustained three to four year oscillations. For stronger coupling, a secondary bifurcation yields six month coupled oscillations during the warm phase of the El Nino-period oscillation. Such variability could potentially affect the predictability of the coupled system.


2019 ◽  
Vol 32 (10) ◽  
pp. 2869-2885
Author(s):  
Paolo Ruggieri ◽  
Fred Kucharski ◽  
Lenka Novak

Abstract Given the recent changes in the Arctic sea ice, understanding the effects of the resultant polar warming on the global climate is of great importance. However, the interaction between the Arctic and midlatitude circulation involves a complex chain of mechanisms, which leaves state-of-the-art general circulation models unable to represent this interaction unambiguously. This study uses an idealized general circulation model to provide a process-based understanding of the sensitivity of the midlatitude circulation to the location of high-latitude warming. A simplified atmosphere is simulated with a single zonally localized midlatitude storm track, which is analogous to the storm tracks in the Northern Hemisphere. It is found that even small changes in the position of the forcing relative to that storm track can lead to very different responses in the midlatitude circulation. More specifically, it is found that heating concentrated in one region may cause a substantially stronger global response compared to when the same amount of heating is distributed across all longitudes at the same latitude. Linear interference between climatological and anomalous flow is an important component of the response, but it does not explain differences between different longitudes of the forcing. Feedbacks from atmospheric transient eddies are found to be associated with this strong response. A dependence between the climatological jet latitude and the jet response to polar surface heating is found. These results can be used to design and interpret experiments with complex state-of-the-art models targeted at Arctic–midlatitude interactions.


2008 ◽  
Vol 136 (11) ◽  
pp. 4130-4149 ◽  
Author(s):  
Hai Lin ◽  
Gilbert Brunet ◽  
Jacques Derome

Abstract The output of two global atmospheric models participating in the second phase of the Canadian Historical Forecasting Project (HFP2) is utilized to assess the forecast skill of the Madden–Julian oscillation (MJO). The two models are the third generation of the general circulation model (GCM3) of the Canadian Centre for Climate Modeling and Analysis (CCCma) and the Global Environmental Multiscale (GEM) model of Recherche en Prévision Numérique (RPN). Space–time spectral analysis of the daily precipitation in near-equilibrium integrations reveals that GEM has a better representation of the convectively coupled equatorial waves including the MJO, Kelvin, equatorial Rossby (ER), and mixed Rossby–gravity (MRG) waves. An objective of this study is to examine how the MJO forecast skill is influenced by the model’s ability in representing the convectively coupled equatorial waves. The observed MJO signal is measured by a bivariate index that is obtained by projecting the combined fields of the 15°S–15°N meridionally averaged precipitation rate and the zonal winds at 850 and 200 hPa onto the two leading empirical orthogonal function (EOF) structures as derived using the same meridionally averaged variables following a similar approach used recently by Wheeler and Hendon. The forecast MJO index, on the other hand, is calculated by projecting the forecast variables onto the same two EOFs. With the HFP2 hindcast output spanning 35 yr, for the first time the MJO forecast skill of dynamical models is assessed over such a long time period with a significant and robust result. The result shows that the GEM model produces a significantly better level of forecast skill for the MJO in the first 2 weeks. The difference is larger in Northern Hemisphere winter than in summer, when the correlation skill score drops below 0.50 at a lead time of 10 days for GEM whereas it is at 6 days for GCM3. At lead times longer than about 15 days, GCM3 performs slightly better. There are some features that are common for the two models. The forecast skill is better in winter than in summer. Forecasts initialized with a large amplitude for the MJO are found to be more skillful than those with a weak MJO signal in the initial conditions. The forecast skill is dependent on the phase of the MJO at the initial conditions. Forecasts initialized with an MJO that has an active convection in tropical Africa and the Indian Ocean sector have a better level of forecast skill than those initialized with a different phase of the MJO.


Sign in / Sign up

Export Citation Format

Share Document