force plate data
Recently Published Documents


TOTAL DOCUMENTS

27
(FIVE YEARS 7)

H-INDEX

9
(FIVE YEARS 0)

Sensors ◽  
2021 ◽  
Vol 21 (24) ◽  
pp. 8244
Author(s):  
Yuri Russo ◽  
Dragan Marinkovic ◽  
Borislav Obradovic ◽  
Giuseppe Vannozzi

Lateral stepping is a motor task that is widely used in everyday life to modify the base of support, change direction, and avoid obstacles. Anticipatory Postural Adjustments (APAs) are often analyzed to describe postural preparation prior to forward stepping, however, little is known about lateral stepping. The aim of the study is to characterize APAs preceding lateral steps and to investigate how these are affected by footwear and lower limb preference. Twenty-two healthy young participants performed a lateral step using both their preferred and non-preferred leg in both barefoot and shod conditions. APA spatiotemporal parameters (size, duration, and speed) along both the anteroposterior and mediolateral axes were obtained through force plate data. APAs preceding lateral stepping showed typical patterns both along the anteroposterior and mediolateral axis. RM-ANOVA highlighted a significant effect of footwear only on medio-lateral APAs amplitude (p = 0.008) and velocity (p = 0.037). No differences were found for the limb preference. APAs in lateral stepping presented consistent features in the sagittal component, regardless of limb/shoe factors. Interestingly, the study observed that footwear induced an increase in the medio-lateral APAs size and velocity, highlighting the importance of including this factor when studying lateral stepping.


2021 ◽  
Vol 8 ◽  
pp. 205566832092955
Author(s):  
Susan Nazirizadeh ◽  
Maria Stokes ◽  
Nigel K Arden ◽  
Alexander IJ Forrester

Introduction A simple tool to estimate loading on the lower limb joints outside a laboratory may be useful for people who suffer from degenerative joint disease. Here, the accelerometers on board of wearables (smartwatch, smartphone) were used to estimate the load rate on the lower limbs and were compared to data from a treadmill force plate. The aim was to assess the validity of wearables to estimate load rate transmitted through the joints. Methods Twelve healthy participants (female n = 4, male n = 8; aged 26 ± 3 years; height: 175 ± 15 cm; body mass: 71 ± 9 kg) carried wearables, while performing locomotive activities on an anti-gravity treadmill with an integrated force plate. Acceleration data from the wearables and force plate data were used to estimate the load rate. The treadmill enabled 7680 data points to be obtained, allowing a good estimate of uncertainty to be examined. A linear regression model and cross-validation with 1000 bootstrap resamples were used to assess the validation. Results Significant correlation was found between load rate from the force plate and wearables (smartphone: [Formula: see text]; smartwatch: [Formula: see text]). Conclusion Wearables’ accelerometers can estimate load rate, and the good correlation with force plate data supports their use as a surrogate when assessing lower limb joint loading in field environments.


2019 ◽  
Vol 5 (1) ◽  
pp. e000582
Author(s):  
Jasmine N Aikman ◽  
Graham P Arnold ◽  
Sadiq Nasir ◽  
Weijie W Wang ◽  
Rami Abboud

ObjectivesThis study aimed to determine if ball position influences the risk of lower limb non-contact injury in hockey sweep pass. It also aimed to determine a ball position that minimises excessive strain placed on the lower limb joints of the lead leg during the sweep pass.MethodsA cohort of 18 female hockey-playing volunteers (age: 19.7±1.5 years; height: 165.5±5.4 cm; body mass: 66.4±7.0 kg) were recruited. Participants performed the sweep pass using three different ball positions: in front, in line with, and behind the heel of the lead (left) foot.Motion analysis and force plate data were collected. Moments and angles in all three planes of motion for the three main lower limb joints were then calculated using Vicon software. Results were statistically analysed using SPSS software.ResultsSignificant differences (p<0.05) were found between the three tested ball positions for the mean maximum angles and moments, and mean ranges of motion produced at the lead three main lower limb joints. Positioning the ball in line with the heel of the lead foot resulted in the lowest moments and angles when compared with the other two ball positions.ConclusionsThe results indicate that positioning the ball in line with the heel of the lead foot is recommended to minimise the risk of injury to the lower limb joints during the hockey sweep pass. It is hoped that these findings will result in this position being implemented by players new to hockey or those returning to the sport following injury.


2015 ◽  
Vol 31 (6) ◽  
pp. 504-506 ◽  
Author(s):  
Christopher A. Bailey ◽  
Patrick A. Costigan

The step-up-and-over test has been used successfully to examine knee function after knee injury. Knee function is quantified using the following variables extracted from force plate data: the maximal force exerted during the lift, the maximal impact force at landing, and the total time to complete the step. For various reasons, including space and cost, it is unlikely that all clinicians will have access to a force plate. The purpose of the study was to determine if the step-up-and-over test could be simplified by using an accelerometer. The step-up-and-over test was performed by 17 healthy young adults while being measured with both a force plate and a 3-axis accelerometer mounted at the low back. Results showed that the accelerometer and force plate measures were strongly correlated for all 3 variables (r = .90–.98, Ps < .001) and that the accelerometer values for the lift and impact indices were 6–7% higher (Ps < .01) and occurred 0.07–0.1 s later than the force plate (Ps < .05). The accelerometer returned values highly correlated to those from a force plate. Compared with a force plate, a wireless, 3-axis accelerometer is a less expensive and more portable system with which to measure the step-up-and-over test.


2014 ◽  
Vol 42 (6) ◽  
pp. 451-466
Author(s):  
Karla D. Bustamante Valles ◽  
Ubong I. Udoekwere ◽  
Jason T Long ◽  
Jennifer M. Schneider ◽  
Susan A. Riedel ◽  
...  

2013 ◽  
Vol 29 (5) ◽  
pp. 517-524 ◽  
Author(s):  
Bhupinder Singh ◽  
Thomas D. Brown ◽  
John J. Callaghan ◽  
H. John Yack

During seated forward reaching tasks in obese individuals, excessive abdominal tissue can come into contact with the anterior thigh. This soft tissue apposition acts as a mechanical restriction, altering functional biomechanics at the hip, and causing difficulty in certain daily activities such as bending down, or picking up objects from the floor. The purpose of the study was to investigate the contact forces and associated moments exerted by the abdomen on the thigh during seated forward-reaching tasks in adult obese individuals. Ten healthy subjects (age 58.1 ± 4.4) with elevated BMI (39.04 ± 5.02) participated in the study. Contact pressures between the abdomen and thigh were measured using a Tekscan Conformat pressure-mapping sensor during forward-reaching tasks. Kinematic and force plate data were obtained using an infrared motion capture system. The mean abdomen-thigh contact force was 10.17 ± 5.18% of body weight, ranging from 57.8 N to 200 N. Net extensor moment at the hip decreased by mean 16.5 ± 6.44% after accounting for the moment generated by abdomen-thigh tissue contact. In obese individuals, abdomen-thigh contact decreases the net moment at the hip joint during seated forward-reaching activities. This phenomenon should be taken into consideration for accurate biomechanical modeling in these individuals.


Sign in / Sign up

Export Citation Format

Share Document