source equivalent
Recently Published Documents


TOTAL DOCUMENTS

14
(FIVE YEARS 7)

H-INDEX

4
(FIVE YEARS 0)

Energies ◽  
2020 ◽  
Vol 13 (17) ◽  
pp. 4562
Author(s):  
Junjie Zhu ◽  
Bingda Zhang

For the problem of poor accuracy of the existing multi-rate simulation methods, this paper proposes a multi-rate real-time simulation method based on the Norton equivalent, compared with multi-rate simulation method based on the ideal source equivalent. After the Norton equivalence of the fast subsystem and the slow subsystem are established, they are solved simultaneously at the junction nodes. In order to reduce the amount of the simulation calculation, the Norton equivalent circuit is obtained by incremental calculation. The data interaction between the fast subsystem and the slow subsystem is realized by extrapolation method. For ensuring the real-time performance of the simulation, the method of the slow subsystem calculates ahead of the fast subsystem is given for the slow subsystem with a large amount of calculation. Finally, the AC/DC hybrid power system was simulated on the real-time simulation platform (FPGA-based Real-Time Digital Solver, FRTDS), and the simulation results were compared with the single-rate simulation, which verified the correctness and accuracy of the proposed method.


Author(s):  
Junjie Zhu ◽  
Bingda Zhang

For the problem of poor accuracy of the existing multi-rate simulation methods, this paper proposes a multi rate real-time simulation method based on the Norton equivalent, compared with multi-rate simulation method based on the ideal source equivalent. After the Norton equivalence of the fast subsystem and the slow subsystem, they are obtained simultaneously at the junction nodes. In order to reduce the amount of simulation calculation, the Norton equivalent circuit is obtained by incremental calculation. The data interface between the fast subsystem and the slow subsystem is realized by extrapolation method. For ensuring the real-time performance of the simulation, the method that the slow subsystem calculates ahead of the fast subsystem is given for the slow subsystem with a large amount of calculation. Finally, the AC/DC hybrid power system was simulated on the real-time simulation platform (FRTDS), and the simulation results were compared with the single-rate simulation, which verified the correctness and accuracy of the method.


Sign in / Sign up

Export Citation Format

Share Document